Computer Graphics

- Light Transport -

Philipp Slusallek

Electro-magnetic wave propagating at speed of light

- Ray
 - Linear propagation
 - Geometrical optics / ray optics
- Vector
 - Polarization
 - Jones Calculus: matrix representation,
 - Has been used in graphics with extended ray model

• Wave

- Diffraction, interference
- Maxwell equations: propagation of light
- Partial simulation possible using extended ray model, e.g. radar

Particle

- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - Quantum Electrodynamics (QED): interaction between particles

- Ray
 - Linear propagation
 - Geometrical optics / ray optics
- Vector
 - Polarization
 - Jones Calculus: matrix representation,
 - Has been used in graphics with extended ray model

• Wave

- Diffraction, interference
- Maxwell equations: propagation of light
- Partial simulation possible using extended ray model, e.g. radar

Particle

- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

Based on human visual perception

- Focused on macroscopic geometry (\rightarrow Reflection Models)
- Only tristimulus color model (e.g. RGB, \rightarrow Human Visual System)
- Psycho-physics: tone mapping, compression, ... (\rightarrow RIS course)

Ray optic assumptions

- Macroscopic objects
- Incoherent light
- Light: scalar, real-valued quantity
- Linear propagation
- Superposition principle: light contributions add up, do not interact
- No attenuation in free space

Limitations

- No microscopic structures ($\approx \lambda$), no volumetric effects (for now)
- No polarization, no coherent light (e.g. laser)
- No diffraction, interference, dispersion, etc. ...

Angle and Solid Angle

- The angle θ (in radians) subtended by a curve in the plane is the length of the corresponding arc on the unit circle: $I = \theta r = 1$
- The solid angle Ω , $d\omega$ subtended by an object is the surface area of its projection onto the unit sphere
 - Units for solid angle: steradian [sr] (dimensionless, $\leq 4\pi$)

Solid Angle in Spherical Coords

• Infinitesimally small solid angle $d\omega$

$$- du = r d\theta$$

$$- dv = r' d\Phi = r \sin \theta \, d\Phi$$

- $dA = du \, dv = r^2 \sin \theta \, d\theta d\Phi$
- $d\omega = dA/r^2 = \sin\theta \, d\theta d\Phi$

Finite solid angle

- Integration of area, e.g.

$$\Omega = \int_{\phi_0}^{\phi_1} d\phi \int_{\theta_0(\phi)}^{\theta_1(\phi)} \sin\theta \, d\theta$$

Solid Angle for a Surface

 The solid angle subtended by a small surface patch S with area dA is obtained (i) by projecting it orthogonal to the vector r from the origin: *dA cos θ*

and (ii) dividing by the squared distance to the origin: $d\omega = \frac{dA \cos \theta}{r^2}$

$$\Omega = \iint_{S} \frac{\vec{r} \cdot \vec{n}}{r^{3}} dA$$

Radiometry

- Definition:
 - Radiometry is the science of measuring radiant energy transfer.
 Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.

Radiometric Quantities

- Energy [J]
- Radiant power [watt = J/s]
- Intensity [watt/sr]
- Irradiance
- Radiosity
- Radiance

[watt/(m² sr)]

[watt/m²]

[watt/m²]

- Q (#Photons x Energy = $n \cdot h\nu$)
- Φ (Total Flux)
- / (Flux from a point per s.angle)
- E (Incoming flux per area)
- B (Outgoing flux per area)
- *L* (Flux per area & proj. s. angle)

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer
- Radiance *L* is defined as
 - The power (flux) traveling through areas dA around some point x
 - In a specified direction $\omega = (\theta, \varphi)$
 - Per unit area perpendicular to the direction of travel
 - Per unit solid angle
- Thus, the differential power $d^2\Phi$ radiated through the differential solid angle $d\omega$, from the projected ω differential area $dA \cos \theta$ is:

dA

Radiometric Quantities: Irradiance

 Irradiance E is defined as the total power per unit area (flux density) incident onto a surface. To obtain the total flux incident to *dA*, the incoming radiance *L_i* is integrated over the upper hemisphere Ω₊ above the surface:

$$E \equiv \frac{d\Phi}{dA}$$
$$d\Phi = \left[\int_{\Omega_{+}} L_{i}(x,\omega) \cos \theta \, d\omega \right] dA$$
$$E(x) = \int_{\Omega_{+}} L_{i}(x,\omega) \cos \theta \, d\omega = \iint_{00}^{2\pi \frac{\pi}{2}} L_{i}(x,\omega) \cos \theta \sin \theta \, d\theta d\phi$$

Radiometric Quantities: Radiosity

 Radiosity B is defined as the total power per unit area (flux density) exitant from a surface. To obtain the total flux incident to dA, the outgoing radiance L_o is integrated over the upper hemisphere Ω₊ above the surface:

$$B \equiv \frac{d\Phi}{dA}$$
$$d\Phi = \left[\int_{\Omega_{+}} L_{o}(x,\omega) \cos \theta \, d\omega \right] dA$$
$$B(x) = \int_{\Omega_{+}} L_{o}(x,\omega) \cos \theta \, d\omega = \iint_{00}^{2\pi \frac{\pi}{2}} L_{o}(x,\omega) \cos \theta \sin \theta \, d\theta d\phi$$

Spectral Properties

Wavelength

- Light is composed of electromagnetic waves
- These waves have different frequencies (and wavelengths)
- Most transfer quantities are continuous functions of wavelength

In graphics

- Each measurement $L(x, \omega)$ is for a discrete band of wavelength only
 - Often R(ed, long), G(reen, medium), B(lue, short) (but see later)

Photometry

- The human eye is sensitive to a limited range of wavelengths
 - Roughly from 380 nm to 780 nm
- Our visual system responds differently to different wavelengths
 - Can be characterized by the Luminous Efficiency Function $V(\lambda)$
 - Represents the average human spectral response
 - Separate curves exist for light and dark adaptation of the eye
- Photometric quantities are derived from radiometric quantities by *integrating* them against this function

Radiometry vs. Photometry

Physics-based quantities

Perception-based quantities

Radiometry		\rightarrow	Photometry	
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)
W/m ²	Radiosity	\rightarrow	Luminosity	Lux (lm/m ²)
	Irradiance		Illuminance	
W/m ² /sr	Radiance	\rightarrow	Luminance	cd/m ² (lm/m ² /sr)

Perception of Light

As *l* increases:

photons / second = flux = energy / time = power (Φ) Solid angle of a rod = resolution (\approx 1 arcminute²) projected rod size = area A angular extent of pupil aperture (r ≤ 4 mm) = solid angle

flux proportional to area and solid angle

radiance = flux per unit area per unit solid angle

The eye detects radiance

(Φ) rod sensitive to flux Ω $A \approx l^2 \cdot \Omega$ $A \approx l^2 \cdot \Omega$ $\Omega' \approx \pi \cdot r^2 / l^2$ $\Phi = L \land \Omega'$ $L = \frac{\Phi}{\Omega' \cdot A}$ $\Phi_0 = L \cdot l^2 \cdot \Omega \cdot \pi \frac{r^2}{l^2} = L \cdot \text{const}$

Brightness Perception

- A'> A : area of sun covers more than one rod: photon flux per rod stays constant
- A' < A : photon flux per rod decreases

Where does the Sun turn into a star ?

- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when $\Omega' < 1$ arcminute² (~ beyond Neptune)

Radiance in Space

Flux leaving surface 1 must be equal to flux arriving on surface 2 $L_1 d\Omega_1 dA_1 = L_2 d\Omega_2 dA_2$

From geometry follows $d\Omega_1 = \frac{dA_2}{l^2}$ $d\Omega_2 = \frac{dA_1}{l^2}$ Ray throughput *T*: $T = d\Omega_1 \cdot dA_1 = d\Omega_2 \cdot dA_2 = \frac{dA_1 \cdot dA_2}{l^2}$

$$L_1 = L_2$$

The **radiance** in the direction of a light ray **remains constant** as it propagates along the ray

Point Light Source

• Point light with *isotropic* (same in all dir.) radiance

- Power (total flux) of a point light source
 - Φ_g = Power of the light source [watt]
- Intensity of a light source (radiance cannot be defined, no area)
 - $I = \Phi_g / 4\pi$ [watt/sr]
- Irradiance on a sphere with radius *r* around light source:
 - $E_r = \Phi_g / (4 \pi r^2)$ [watt/m²]
- Irradiance on some other surface A

Inverse Square Law

- Irradiance E: power per m²
 - Illuminating quantity
- Distance-dependent
 - Double distance from emitter: area of sphere is four times bigger
- Irradiance falls off with inverse of squared distance
 - Only for point light sources (!)

Light Source Specifications

- Power (total flux)
 Emitted energy / time
- Active emission size
 - Point, line, area, volume
- Spectral distribution
 - Thermal, line spectrum

Directional distribution

- Goniometric diagram

Light Source Classification

Radiation characteristics

Directional light

- Spot-lights
- Projectors
- Distant sources

Diffuse emitters

- Torchieres
- Frosted glass lamps

Ambient light

- "Photons everywhere"

Emitting area

- Volume
 - Neon advertisements
 - Sodium vapor lamps
 - Fire
- Area
 - CRT/LCD display
 - (Overcast) sky
- Line
 - Clear light bulb, filament
- "Point"
 - Xenon lamp
 - Arc lamp
 - Laser diode

Sky Light

• Sun

- Point source (approx.)
- White light (by def.)
- Sky
 - Area source
 - Scattering: blue

Horizon

- Brighter
- Haze: whitish

Overcast sky

- Multiple scattering in clouds
- Uniform grey
- Several sky models are available

Courtesy Lynch & Livingston

LIGHT TRANSPORT

Light Transport in a Scene

Scene

- Lights (emitters)
- Object surfaces (partially absorbing)

• Illuminated object surfaces become emitters, too!

- Radiosity = Irradiance minus absorbed photons flux density
 - Radiosity: photons per second per m² leaving surface
 - Irradiance: photons per second per m² incident on surface
 - But also need to look at directional distribution

Light bounces between all mutually visible surfaces

- Invariance of radiance in free space
 - No absorption in-between objects
- Dynamic energy equilibrium in a scene
 - Emitted photons = absorbed photons (+ escaping photons)
 - → Global Illumination, discussed in RIS lecture

$$L(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

r

- Visible surface radiance
 - Surface position
 - Outgoing direction
- Incoming illumination direction
- Emission
- Reflected light
 - Incoming radiance from all directions
 - Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)

 $L_i(x,\omega_i)$

 $f_r(\omega_i, x, \omega_o)$

Rendering Equation

- Most important equation for graphics
 - Expresses energy equilibrium in scene

$$L(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

total radiance = emitted + reflected radiance

• First term: Emission from the surface itself

Non-zero only for light sources

Second term: reflected radiance

 Integral over all possible incoming directions of radiance times angle-dependent surface reflection function/

Fredholm integral equation of 2nd kind

- Difficulty: Unknown radiance appears both on the left-hand side and inside the integral
- Numerical methods necessary to compute approximate solution

RE: Integrating over Surfaces

Outgoing illumination at a point

$$L(x,\omega_o) = L_e(x,\omega_o) + L_r(x,\omega_o)$$
$$L(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

 $L_i(\underline{x}, \underline{W}_i)$

 \underline{X}

- Linking with other surface points
 - Incoming radiance at x is outgoing radiance at y

$$L_i(x,\omega_i) = L(y,-\omega_i) = L(RT(x,\omega_i),-\omega_i)$$

- **Ray-Tracing operator:** $RT(x, \omega_i) = y$

 $L(\underline{y}, -\underline{W}_i)$

 $\underline{\mathcal{O}}_{i}$

Integrating over Surfaces

Outgoing illumination at a point

$$L(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

Re-parameterization over surfaces S $d\omega_i = \frac{\cos\theta_y}{\|x - y\|^2} dA_y$ $d\omega_{i}$ dAn X $L(x, \omega_o)$ $= L_e(x, \omega_o)$ $f_r(\omega(x,y),x,\omega_o)L_i(x,\omega(x,y))V(x,y) \frac{\cos\theta_i\cos\theta_y}{\|x-y\|^2}$

Integrating over Surfaces

$$L(x, \omega_o) = L_e(x, \omega_o) + \int_{y \in S} f_r(\omega(x, y), x, \omega_o) L_i(x, \omega(x, y)) V(x, y) \frac{\cos \theta_i \cos \theta_y}{\|x - y\|^2} dA_y$$

• Geometry term: $G(x, y) = V(x, y) \frac{\cos \theta_i \cos \theta_y}{\|x - y\|^2}$

• **Visibility term:**
$$V(x, y) = \begin{cases} 1, & if visible \\ 0, & otherwise \end{cases}$$

• Integration over all surfaces: $\int_{y \in S} \cdots dA_y$ $L(x, \omega_o) = L_e(x, \omega_o) + \int_{y \in S} f_r(\omega(x, y), x, \omega_o) L_i(x, \omega(x, y)) G(x, y) dA_y$

Rendering Equation: Approximations

- Approximations based only on empirical foundations
 - An example: polygon rendering in OpenGL (\rightarrow later)
- Using RGB instead of full spectrum
 - Follows roughly the eye's sensitivity (L, f_r are 3D vectors for RGB)
- Sampling hemisphere only at discrete directions
 - Simplifies integration to a summation
- Reflection function model (BRDF, see later)
 - Approximation by parameterized functions
 - Diffuse: light reflected uniformly in all directions
 - Specular: perfect reflection/refraction direction
 - Glossy: mirror reflection, but from a rough surface
 - And mixture thereof

Ray Tracing

$$L(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega_+} f_r(\omega_i, x, \omega_o) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

Simple ray tracing

- Illumination from discrete point light sources only – direct illumination only
 - Integral \rightarrow sum of contributions from each light
 - No global illumination
- Evaluates angle-dependent reflectance function (BRDF) – shading process

Advanced ray tracing techniques

- Recursive ray tracing
 - Multiple reflections/refractions (e.g. for specular surfaces)
- Ray tracing for global illumination
 - Stochastic sampling (Monte Carlo methods) → RIS course

Different Types of Illumination

• Three types of illumination computations in CG

Ambient Illumination

- Global illumination is costly to compute
- Indirect illumination (through interreflections) is typically smooth
 - Approximate via a constant term $L_{i,a}$ (incoming ambient illum.)
- Has no incoming direction, provide ambient reflection term k_a
 - Often chosen to be the same as the diffuse term $k_a = k_d$

$$L_o(x, \omega_o) = k_a L_{i,a}$$