## Computer Graphics

- Texturing -

**Philipp Slusallek** 

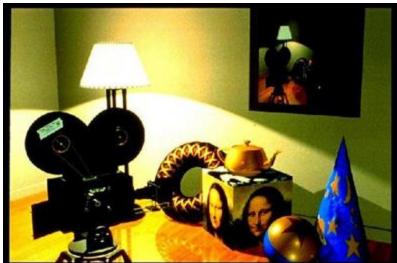
## **Texture**

- Textures modify the input for shading computations
  - Either via (painted) images textures or procedural functions
- Example texture maps for
  - Reflectance, normals, shadows, reflections, essentially anything,

. . .







## **Definition: Textures**

## Textures map texture coordinates to shading values

- Input: 1D/2D/3D/4D texture coordinates
  - Explicitly given or derived via other data (e.g., position, direction, ...)
- Output: Scalar or vector value

### Modified values in shading computations

- Reflectance
  - Changes the diffuse or specular reflection coefficient  $(k_d, k_s)$
- Geometry and Normal (important for lighting)
  - Displacement mapping  $P' = P + \Delta P$
  - Normal mapping  $N' = N + \Delta N$
  - Bump mapping N' = N(P + tN)
- Opacity
  - Modulating transparency (e.g., for fences in games)
- Illumination
  - Light maps, environment mapping, reflection mapping
- Anything else ...

## **IMAGE TEXTURES**

# **Image Textures**

### Image textures

- Return the color of the image at a given point
- Point defined by mapping the texture coordinates  $[0,1]^n$  to the entire image
- Images may be 1D (line of pixels), 2D, and 3D (stacks of images)
- Coordinates outside of  $[0,1]^2$  can be mapped in different modes

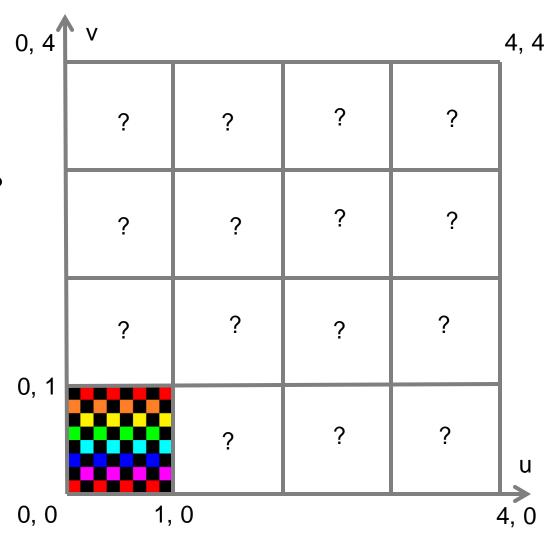


#### Texture Coordinates

- (u, v) in [0, 1] x [0, 1]

#### What if?

- (u, v) not in unit square?

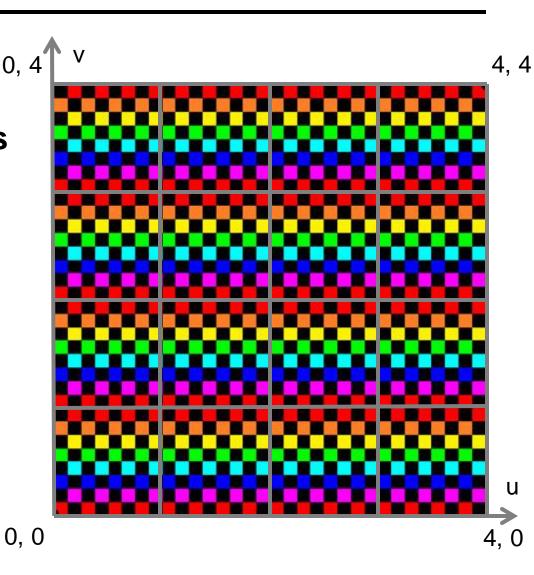


Repeat

Fractional Coordinates

$$-t_u = u - \lfloor u \rfloor$$

$$-t_v = v - \lfloor v \rfloor$$



#### Mirror

#### Fractional Coordinates

$$-t_u = u - \lfloor u \rfloor$$

$$-t_v = v - \lfloor v \rfloor$$

#### Lattice Coordinates

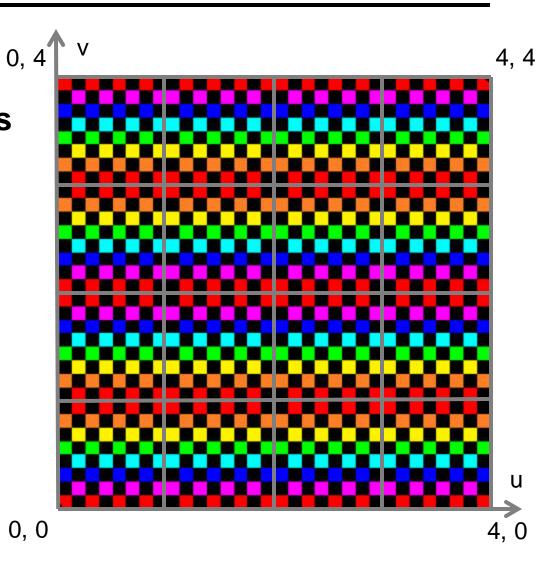
$$-l_u=[u]$$

$$-l_{v}=\lfloor v\rfloor$$

#### Mirror if Odd

$$- \text{ if } (I_u \% 2 == 1)$$

$$t_u = 1 - t_u$$



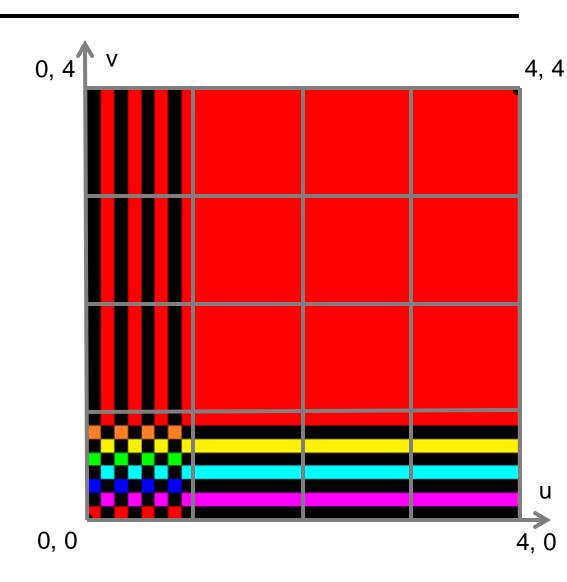
### Clamp

## Clamp u to [0, 1]

```
if (u < 0) tu = 0;
else if (u > 1) tu = 1;
else tu = u;
```

## Clamp v to [0, 1]

```
if (v < 0) tv = 0;
else if (v > 1) tv = 1;
else tv = v;
```

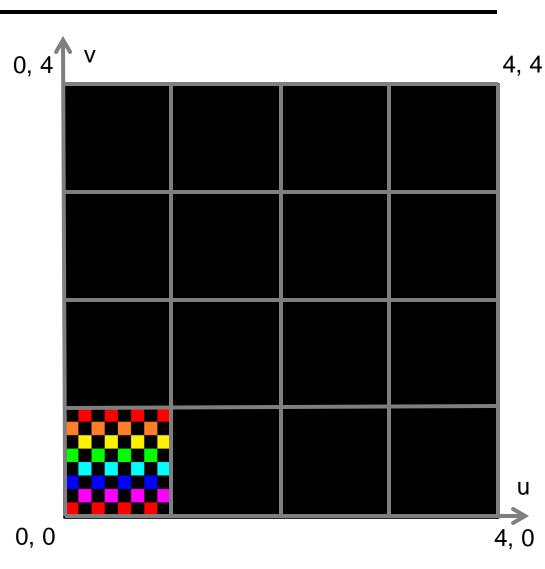


#### Border

 Border color can be explicitly defined

#### Check Bounds

```
if (u < 0 \parallel u > 1 \parallel v < 0 \parallel v > 1)
return backgroundColor;
else
tu = u;
tv = v;
```



- Comparison
  - With OpenGL texture modes



GL\_REPEAT



GL\_MIRRORED\_REPEAT



GL\_CLAMP\_TO\_EDGE

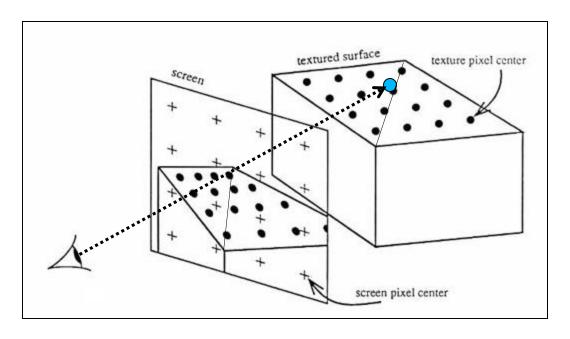


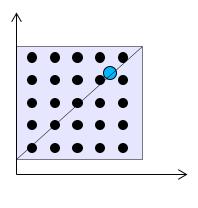
GL\_CLAMP\_TO\_BORDER

## Reconstruction Filter

### Image texture

- Discrete set of sample values (given at texel centers!)
- In general
  - Hit point does not exactly hit a texture sample
- Still want to reconstruct a continuous function
  - Use a reconstruction filter to find color for hit point





Texture Space

# Nearest Neighbor

#### Local Coordinates

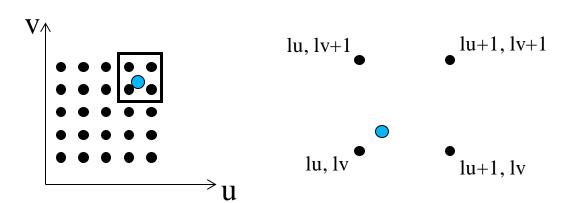
- Assuming cell-centered samples
- u = tu \* resU;
- v = tv \* resV;

#### Lattice Coordinates

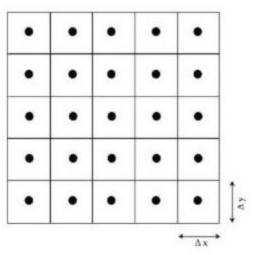
- $Iu = min(\lfloor u \rfloor, resU 1);$
- $Iv = min(\lfloor v \rfloor, resV 1);$

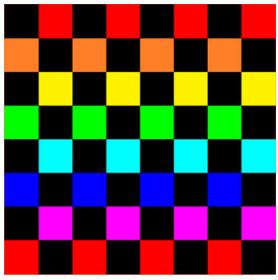
#### Texture Value

– return image[lu, lv];



#### Pixel centred registration





# Bilinear Interpolation

#### Local Coordinates

- Assuming node-centered samples
- u = tu \* (resU 1);
- v = tv \* (resV 1);

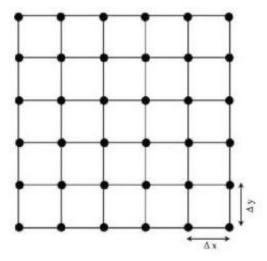
#### Fractional Coordinates

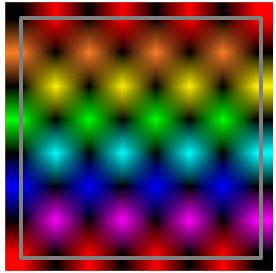
- $fu = u \lfloor u \rfloor;$
- $\text{ fv } = \text{v} \lfloor \text{v} \rfloor;$

#### Texture Value

- return (1-fu) (1-fv) image[[u] , [v] ]
+ (1-fu) ( fv) image[[u] , [v]+1]
+ ( fu) (1-fv) image[[u]+1, [v]+1]
+ ( fu) ( fv) image[[u]+1, [v]+1]

#### Grid node registration



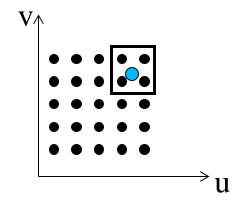


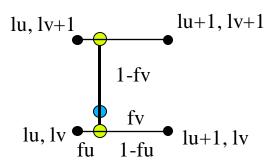
# Bilinear Interpolation

### Successive Linear Interpolations

$$- u0 = (1-fv) image[ \lfloor u \rfloor , \lfloor v \rfloor ] + ( fv) image[ \lfloor u \rfloor , \lfloor v \rfloor + 1];$$

- u1= (1-fv) image[
$$\lfloor u \rfloor$$
+1, $\lfloor v \rfloor$ ]  
+ ( fv) image[ $\lfloor u \rfloor$ +1, $\lfloor v \rfloor$ +1];





# Nearest vs. Bilinear Interpolation





GL\_NEAREST GL\_LINEAR

# **Bicubic Interpolation**

### Properties

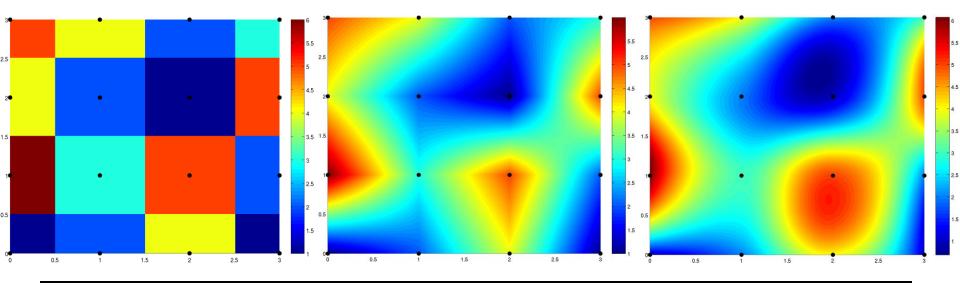
- Assuming node-centered samples
- Essentially based on cubic splines (see later)

#### Pros

- Even smoother

#### Cons

- More complex & expensive (4x4 kernel)
- Overshoot



# Discussion: Image Textures

#### Pros

- Simple generation
  - Painted, simulation, ...
- Simple acquisition
  - Photos, videos

#### Cons

- Illumination "frozen" during acquisition (e.g. photo)
- Limited resolution
- Susceptible to aliasing
- High memory requirements (often HUGE for films, 100s of GB)
- Issues when mapping 2D image onto 3D object

## PROCEDURAL TEXTURES

## Discussion: Procedural Textures

#### Cons

- Sometimes hard to achieve specific effect
- Possibly non-trivial programming

#### Pros

- Flexibility & parametric control
- Unlimited resolution
- Anti-aliasing possible
- Low memory requirements
- May be directly defined as 3D "image" mapped to 3D geometry
- High visual complexity with low-cost

## 2D Checkerboard Function

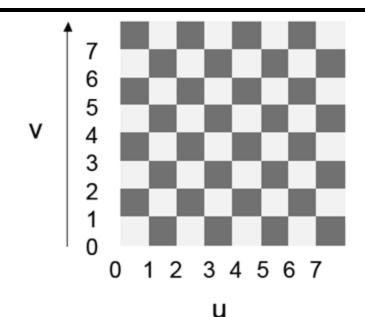
#### Lattice Coordinates

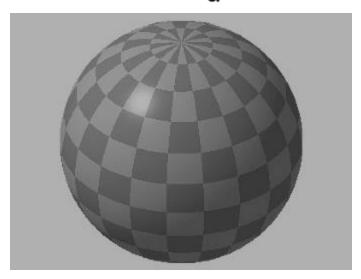
- $lu = \lfloor u \rfloor$
- $Iv = \lfloor v \rfloor$

### Compute Parity

- parity = (lu + lv) % 2;

- if (parity == 1)
  - return color1;
- else
  - return color0;





## 3D Checkerboard - Solid Texture

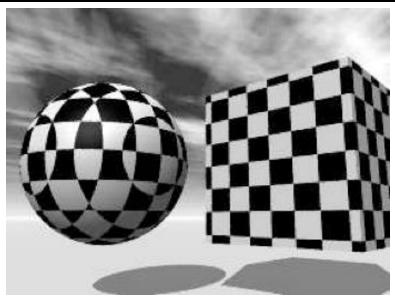
#### Lattice Coordinates

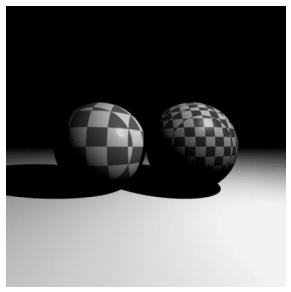
- $lu = \lfloor u \rfloor$
- $Iv = \lfloor v \rfloor$
- Iw  $= \lfloor w \rfloor$

### Compute Parity

- parity = (lu + lv + lw) % 2;

- if (parity == 1)
  - return color1;
- else
  - return color0;





## Tile

#### Fractional Coordinates

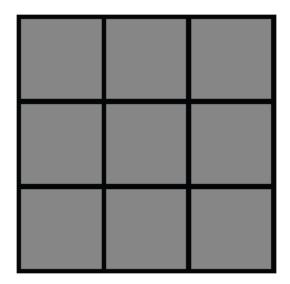
$$- fu = u - \lfloor u \rfloor$$

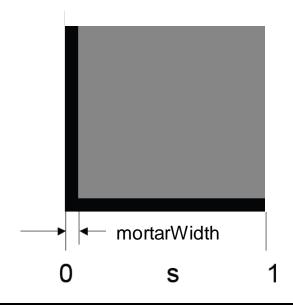
$$- fv = v - \lfloor v \rfloor$$

### Compute Booleans

- bu = fu < mortarWidth;</p>
- bv = fv < mortarWidth;

- if (bu || bv)
  - return mortarColor;
- else
  - return tileColor;





## **Brick**

#### Shift Column for Odd Rows

- parity =  $\lfloor v \rfloor$  % 2;
- u = parity \* 0.5;

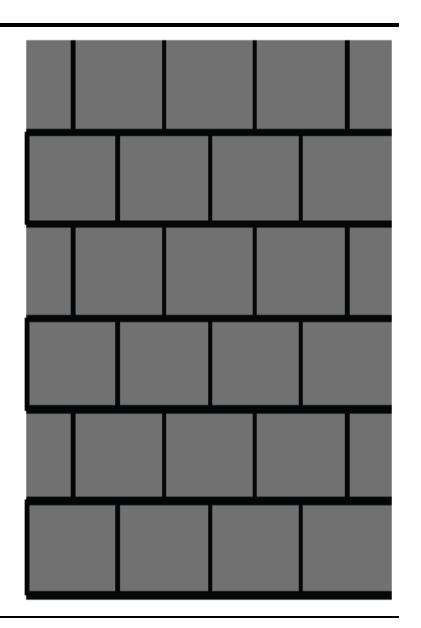
#### Fractional Coordinates

- $fu = u \lfloor u \rfloor$
- fv = v |v|

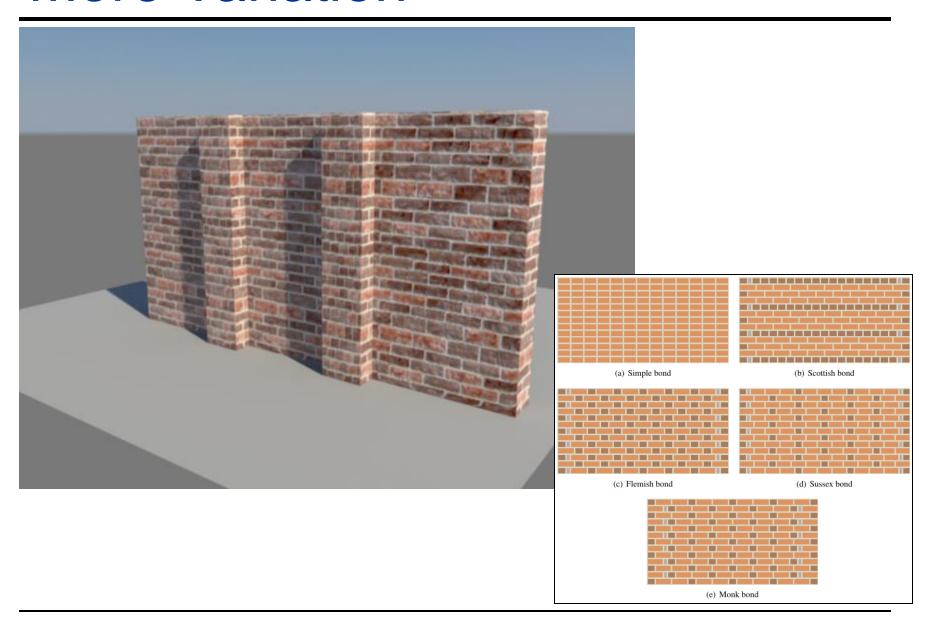
### Compute Booleans

- bu = fu < mortarWidth;</p>
- bv = fv < mortarWidth;

- if (bu || bv)
  - return mortarColor;
- else
  - return brickColor;



# **More Variation**

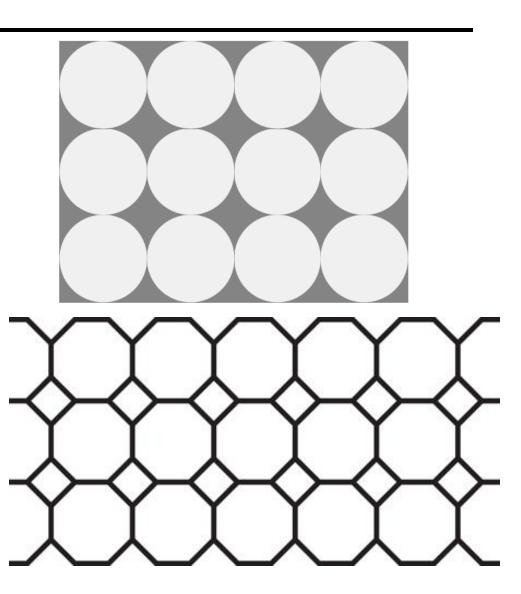


## Other Patterns

Circular Tiles

Octagonal Tiles

Use your imagination!



## Perlin Noise

#### Natural Patterns

- Similarity between patches at different locations
  - Repetitiveness, coherence (e.g., skin of a tiger or zebra)
- Similarity on different resolution scales
  - Self-similarity
- But never completely identical
  - Additional disturbances, turbulence, noise

## Mimic Statistical Properties

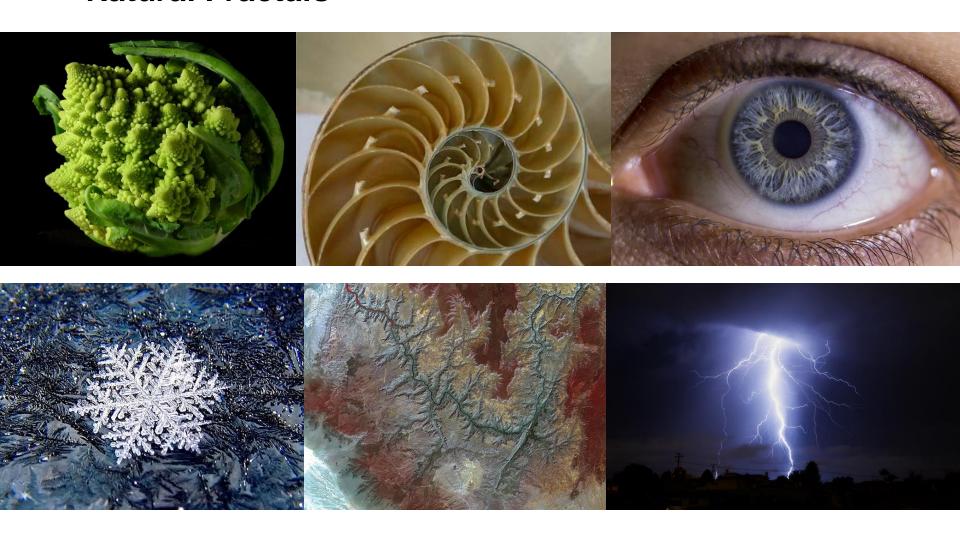
- Purely empirical approach
- Looks convincing, but has nothing to do with material's physics

### Perlin Noise is essential for adding "natural" details

Used in many texture functions

# Perlin Noise

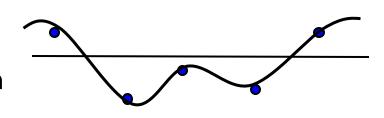
## Natural Fractals



## **Noise Function**

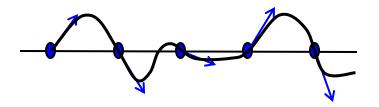
## Noise(x, y, z) Function

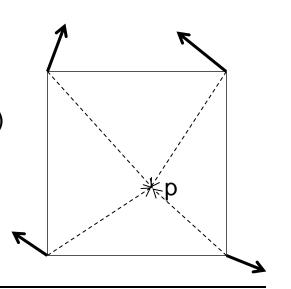
- Statistical invariance under rotation
- Statistical invariance under translation
- Roughly fixed frequency of ~1 Hz



## Integer Lattice (i, j, k)

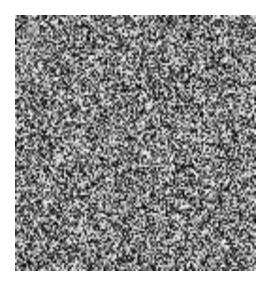
- Value noise
  - Random value at lattice points
- Gradient noise (most common)
  - Random gradient vector at lattice point
- Interpolation
  - Bi-/tri-linear or cubic (Hermite spline, → later)
- Hash function to map vertices to values
  - Essentially randomized look up
  - Virtually infinite extent and variation with finite array of values



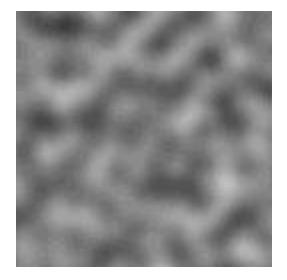


## Noise vs. Noise

- Value Noise vs. Gradient Noise
  - Gradient noise has lower regularity artifacts
  - More high frequencies in noise spectrum
- Random Values vs. Perlin Noise
  - Stochastic vs. deterministic



Random values at each pixel



Gradient noise

## **Turbulence Function**

#### Noise Function

Single spike in frequency spectrum (single frequency, see later)

#### Natural Textures

- Mix of different frequencies
- Decreasing amplitude for high frequencies

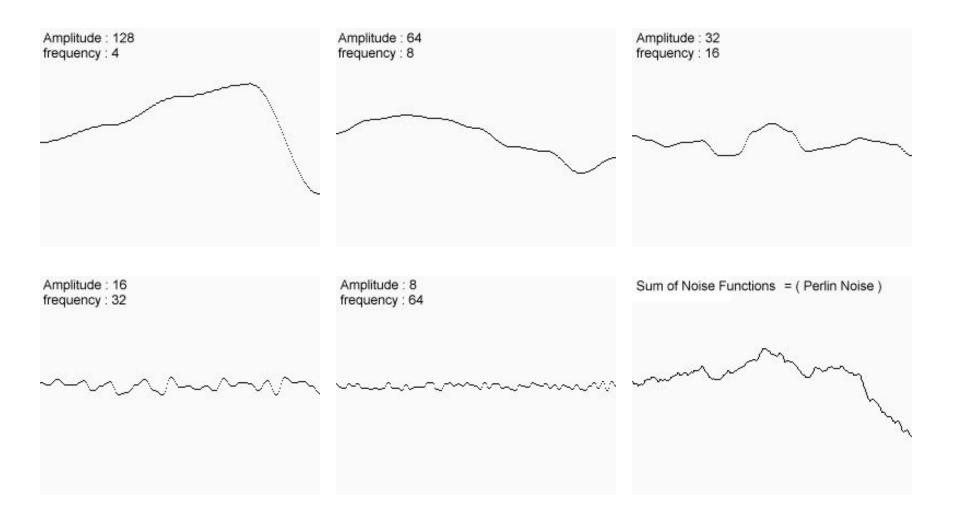
#### Turbulence from Noise

- $Turbulence(x) = \sum_{i=0}^{k} |a_i * noise(f_i x)|$ 
  - Frequency:  $f_i = 2^i$
  - Amplitude:  $a_i = 1 / p^i$
  - Persistence: *p* typically *p*=2
  - Power spectrum :  $a_i = 1 / f_i$
  - Brownian motion:  $a_i = 1 / f_i^2$

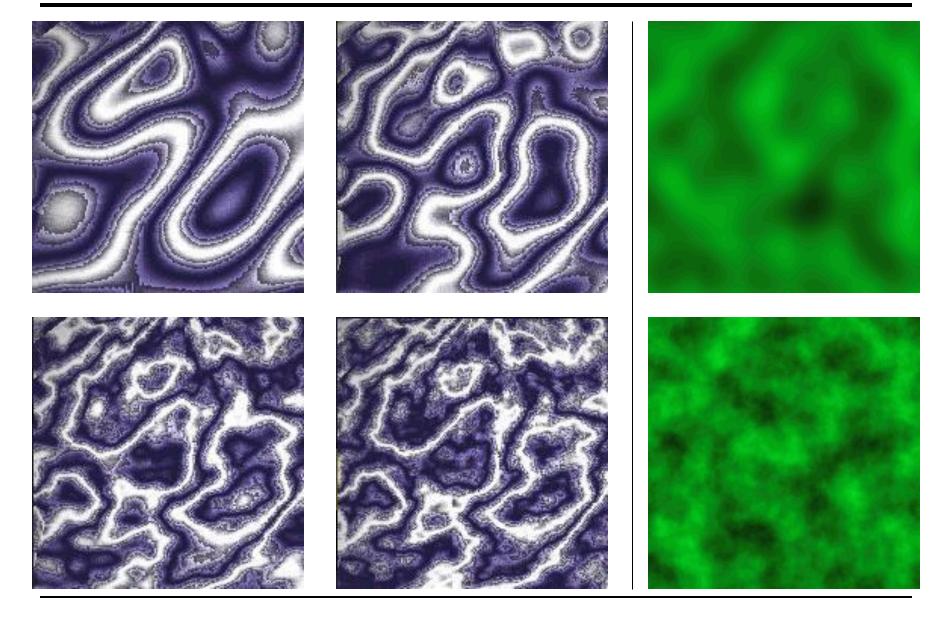
#### Summation truncation

- 1st term: noise(x)
- 2nd term: noise(2x)/2
- ...
- Until period  $(1/f_k)$  < 2 pixel-size (band limit, see later)

# Synthesis of Turbulence (1-D)



# Synthesis of Turbulence (2-D)



# Example: Marble

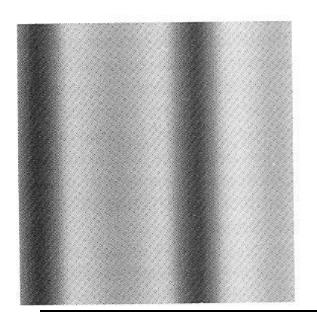
#### Overall Structure

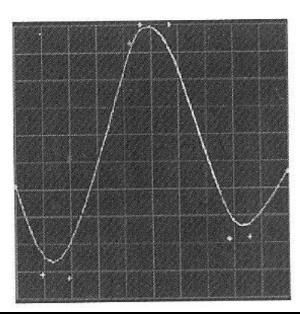
- Smoothly alternating layers of different marble colors
- f<sub>marble</sub>(x,y,z) := marble\_color(sin(x))
- marble\_color: transfer function (see lower left)

### Realistic Appearance

- Simulated turbulence
- f<sub>marble</sub>(x,y,z) := marble\_color(sin(x + turbulence(x, y, z)))





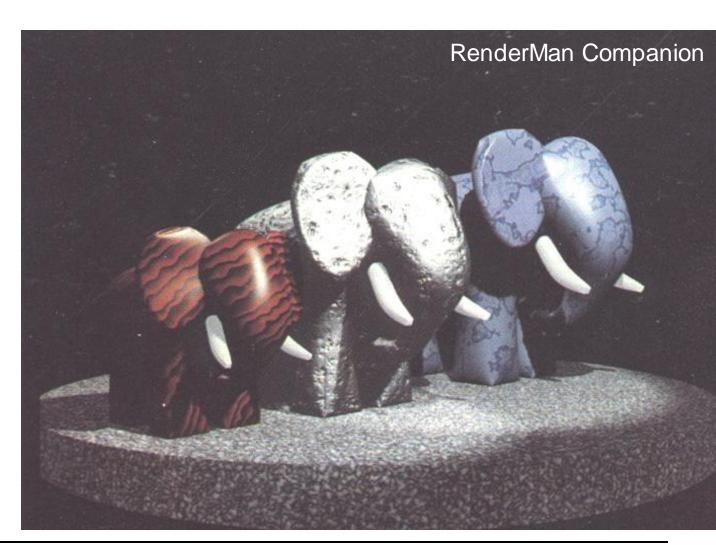




# Solid Noise

#### 3D Noise Texture

- Wood
- Erosion
- Marble
- Granite
- **—** ...



## **Others Applications**

#### Bark

Turbulated saw-tooth function

#### Clouds

- White blobs
- Turbulated transparency along edge

#### Animation

Vary procedural texture function's parameters over time

# **Shading Languages**

#### Small program fragments (plugins)

- Compute certain aspects of the rendering process
  - Executing at innermost loop, must be extremely efficient
- Executed at each intersection

#### Typical shaders

- Material/surface shaders: Compute reflected color
- Light shaders: Compute illumination from light source at some point
- Volume shader: Compute interaction in participating medium
- Displacement shader: Compute changes to the geometry
- Camera shader: Compute rays for each pixel

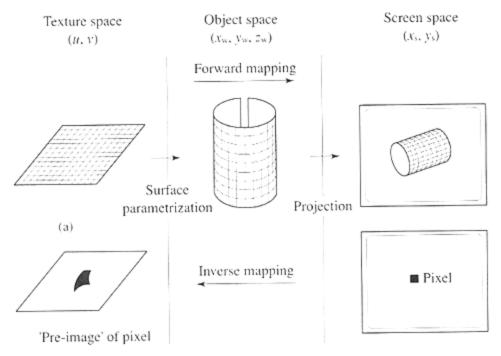
#### Shading languages

- RenderMan (the mother of all shading languages)
- HLSL (DX only), GLSL (OpenGL only), CG (Nvidia only)
- Currently no portable shading format usable for exchange
  - But Material Definition Language (MDL, Nvidia), shade.js (UdS)

#### More details later

### **TEXTURE MAPPING**

### 2D Texture Mapping



#### Forward mapping

- Object surface parameterization, plus
- Projective transformation to the screen

#### Inverse mapping

- Find corresponding pre-image/footprint of each pixel in texture
- Integrate over pre-image

### **Surface Parameterization**

- To apply textures we need 2D coordinates on surfaces
  - → Parameterization
- Some objects have a natural parameterization
  - Sphere: spherical coordinates  $(\varphi, \theta) = (2\pi u, \pi v)$
  - Cylinder: cylindrical coordinates  $(\varphi, h) = (2 \pi u, H v)$
  - Parametric surfaces (such as B-spline or Bezier surfaces → later)
- Parameterization is less obvious for
  - Polygons, implicit surfaces, teapots, ...



### Triangle Parameterization

- Triangle is a planar object
  - Has implicit parameterization (e.g., barycentric coordinates)
  - But we need more control: Placement of triangle in texture space
- Assign texture coordinates (u,v) to each vertex  $(x_0,y_0,z_0)$
- Apply viewing projection  $(x_0, y_0, z_0) \rightarrow (x, y)$  (details later)
- Yields full texture transformation (warping) (u,v) → (x,y)

$$x = \frac{au + bv + c}{gu + hv + i} \qquad y = \frac{du + ev + f}{gu + hv + i}$$

In homogeneous coordinates (by embedding (u,v) as (u,v,1))

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} u' \\ v' \\ q \end{bmatrix}; (x, y) = \left(\frac{x'}{w}, \frac{y'}{w}\right), (u, v) = \left(\frac{u'}{q}, \frac{v'}{q}\right)$$

- Transformation coefficients determined by 3 pairs  $(u,v) \rightarrow (x,y)$ 
  - Three linear equations
  - Invertible iff neither set of points is collinear

# Triangle Parameterization (2)

Given 
$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} u' \\ v' \\ q \end{bmatrix}$$

The inverse transform  $(x,y)\rightarrow(u,v)$  is

$$\begin{bmatrix} u' \\ v' \\ q \end{bmatrix} = \begin{bmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{bmatrix} \begin{bmatrix} \chi' \\ y' \\ w \end{bmatrix}$$

- Coefficients must be calculated for each triangle
  - Rasterization
    - Incremental bilinear update of (u',v',q) in screen space
    - Using the partial derivatives of the linear function (i.e., constants)
  - Ray tracing
    - Evaluated at every intersection (via barycentric coordinates)
- Often (partial) derivatives are needed as well
  - Explicitly given in matrix (colored for  $\partial u/\partial x$ ,  $\partial v/\partial x$ ,  $\partial q/\partial x$ )

### **Textures Coordinates**

#### Solid Textures

- 3D world/object (x,y,z) coords  $\rightarrow$  3D (u,v,w) texture coordinates
- Similar to carving object out of material block

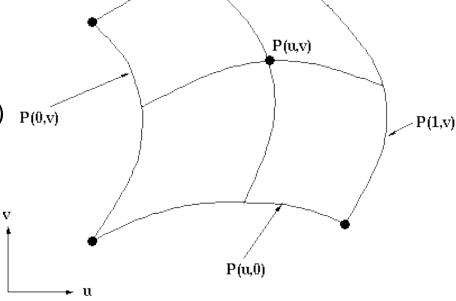
#### 2D Textures

– 3D Cartesian (x,y,z) coordinates → 2D (u,v) texture coordinates?



#### Definition (more detail later)

- Surface defined by parametric function
  - (x, y, z) = p(u, v)
- Input
  - Parametric coordinates: (u, v)
- Output
  - Cartsesian coordinates: (x, y, z) P(0,v)



P(u,1)

#### Texture Coordinates

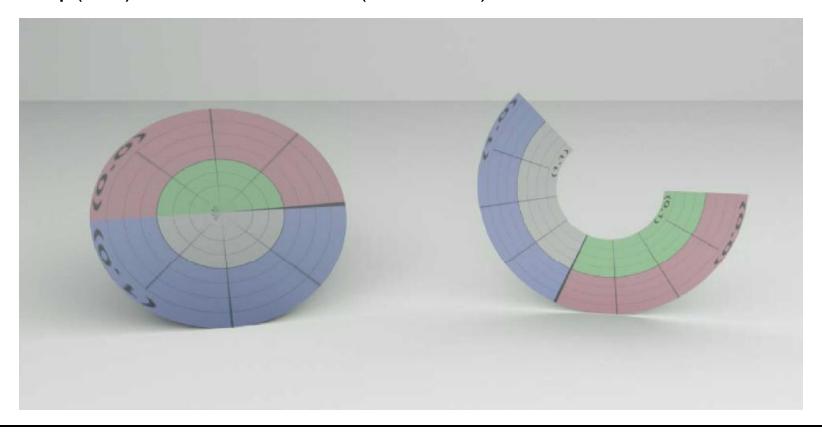
- Directly derived from surface parameterization
- Invert parametric function
  - From world coordinates to parametric coordinates
  - Usually computed implicitly anyway (e.g. in ray tracing)

#### Polar Coordinates

-  $(x, y, 0) = Polar2Cartesian(r, \phi)$ 

#### Disc

-  $p(u, v) = Polar2Cartesian(R v, 2 \pi u) // disc radius R$ 

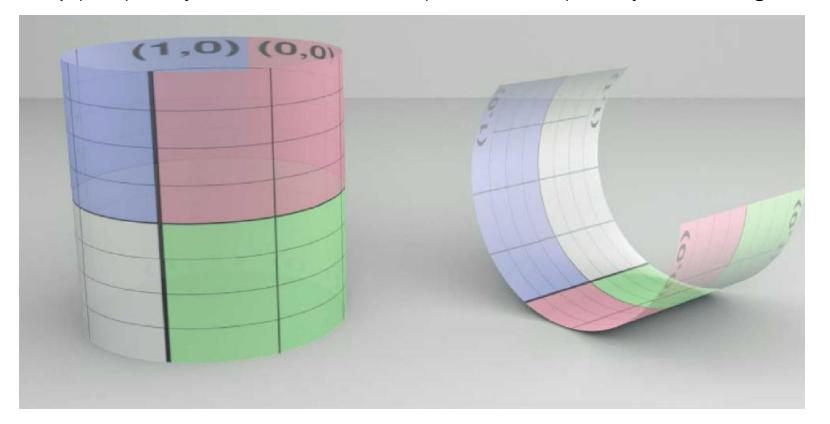


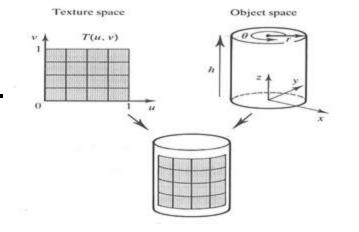
#### Cylindrical Coordinates

-  $(x, y, z) = Cylindrical2Cartesian(r, \phi, z)$ 

#### Cylinder

– p(u, v) = Cylindrical2Cartesian(r, 2 π u, H v) // cylinder height H



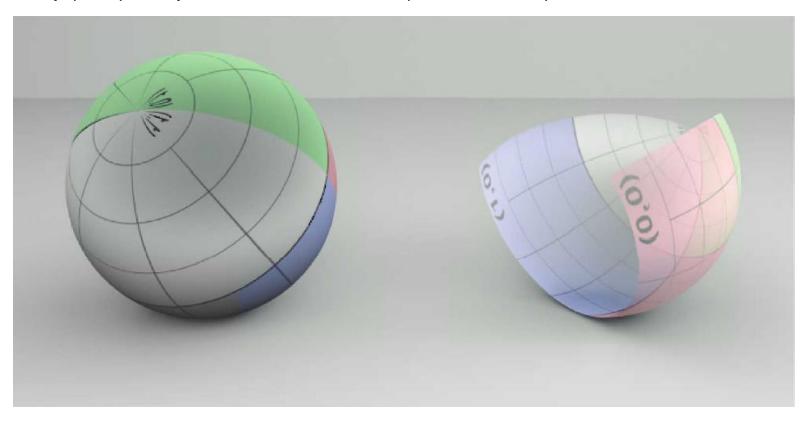


#### Spherical Coordinates

-  $(x, y, z) = Spherical2Cartesian(r, \theta, \phi)$ 

#### Sphere

-  $p(u, v) = Spherical2Cartesian(r, \pi v, 2 \pi u)$ 

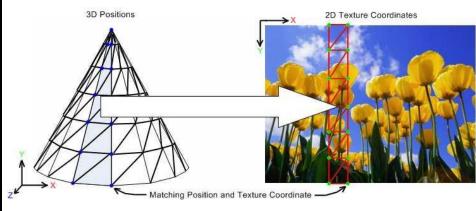


### Triangle p2 Use barycentric coordinates directly $- p(u, v) = (1 - u - v)p_0 + up_1 + v p_2$ **p1** V u 0,1 0,1 0,0 0,0

#### Triangle Mesh

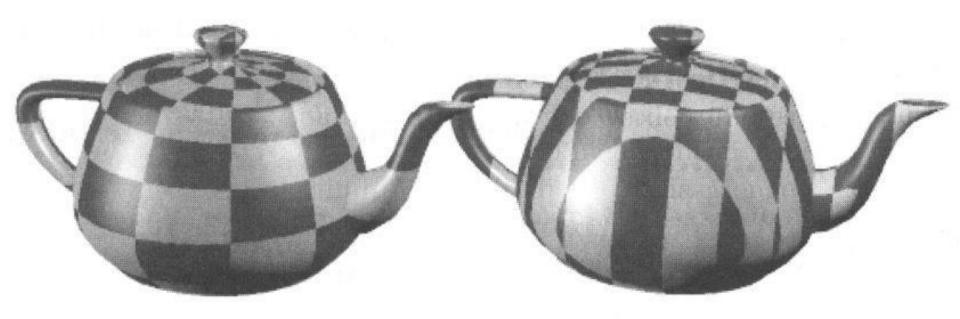
- Associate a predefined texture coordinate to each triangle vertex
  - Interpolate texture coordinates using barycentric coordinates
  - $u = \lambda_0 p_{0u} + \lambda_1 p_{1u} + \lambda_2 p_{2u}$
  - $v = \lambda_0 p_{0v} + \lambda_1 p_{1v} + \lambda_2 p_{2v}$
- Texture mapped onto manifold
  - Single texture shared by many triangles



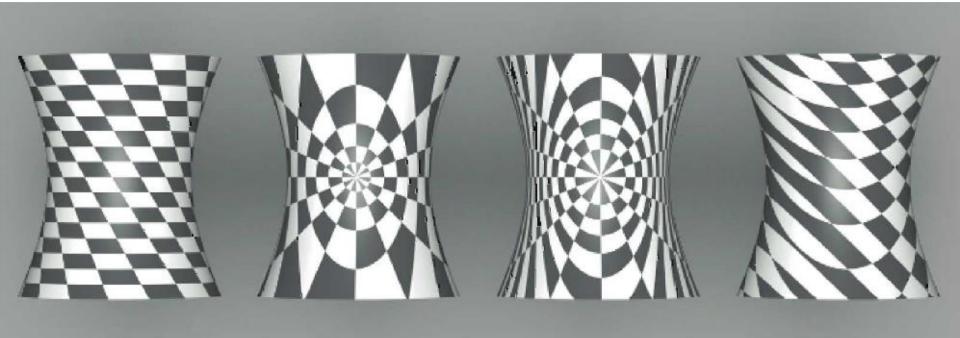


### **Surface Parameterization**

- Other Surfaces
  - No intrinsic parameterization??

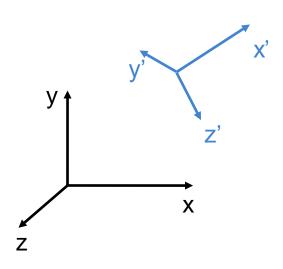


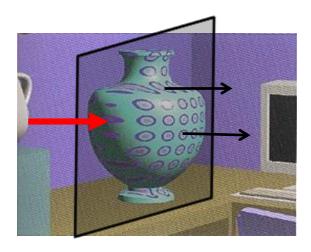
- Coordinate System Transform
  - Express Cartesian coordinates into a given coordinate system
- 3D to 2D Projection
  - Drop one coordinate
  - Compute u and v from remaining 2 coordinates



#### Planar Mapping

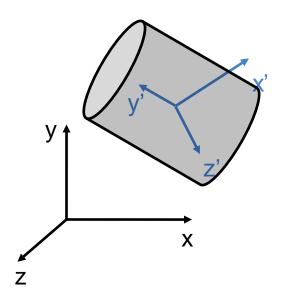
- Map to different Cartesian coordinate system
- -(x', y', z') = AffineTransformation(x, y, z)
  - Orthogonal basis: translation + row-vector rotation matrix
  - Non-orthogonal basis: translation + inverse column-vector matrix
- Drop z', map u = x', map v = y'
- E.g.: Issues when surface normal orthogonal to projection axis

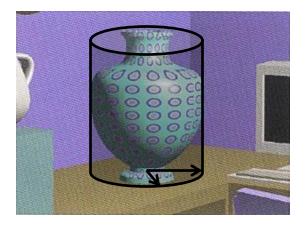




#### Cylindrical Mapping

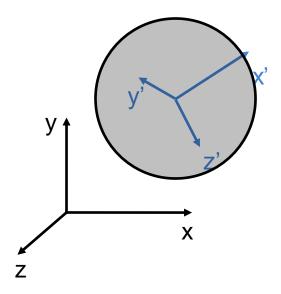
- Map to cylindrical coordinates (possibly after translation/rotation)
- $(r, \phi, z)$  = Cartesian2Cylindrical(x, y, z)
- Drop r, map  $u = \varphi / 2\pi$ , map v = z / H
- Extension: add scaling factors:  $u = \alpha \phi / 2 \pi$
- E.g.: Similar topology gives reasonable mapping

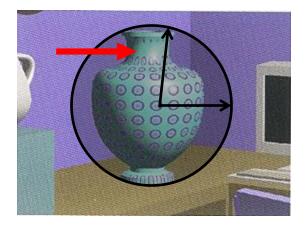




#### Spherical Mapping

- Map to spherical coordinates (possibly after translation/rotation)
- $(r, \theta, \phi)$  = Cartesian2Spherical(x, y, z)
- Drop r, map  $u = \phi / 2 \pi$ , map  $v = \theta / \pi$
- Extension: add scaling factors to both u and v
- E.g.: Issues in concave regions

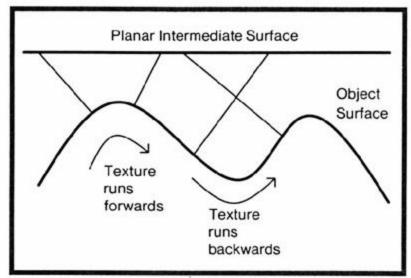




# Two-Stage Mapping: Problems

#### Problems

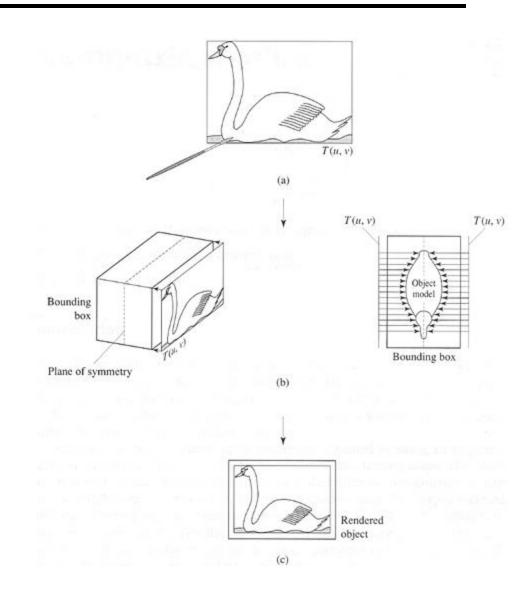
- May introduce undesired texture distortions if the intermediate surface differs too much from the destination surface
- Still often used in practice because of its simplicity
- Example: Mapping point to plane along normal at the point:



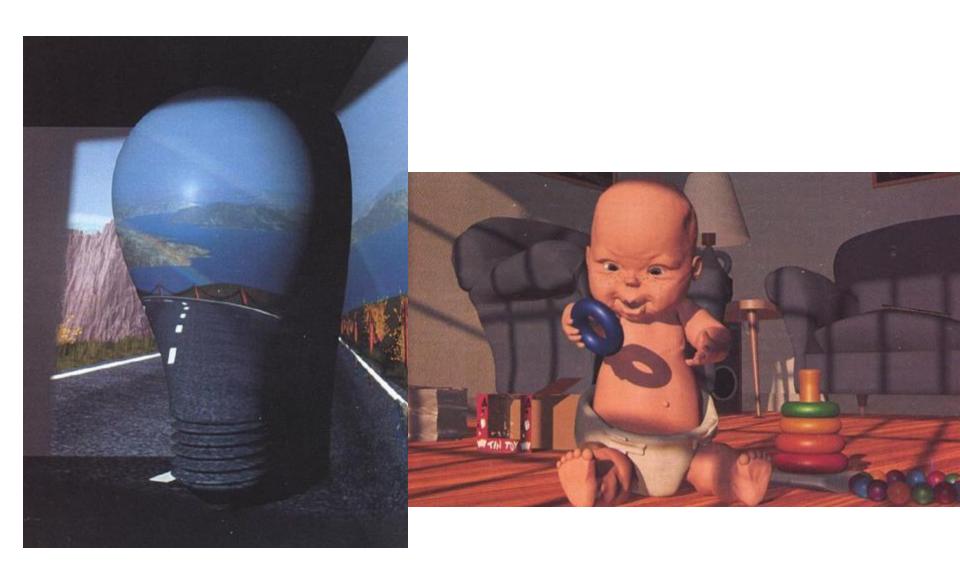
Surface concavities can cause the texture pattern to reverse if the object normal mapping is used.

### **Projective Textures**

- Project texture onto object surfaces
  - Slide projector
- Parallel or perspective projection
- Use photographs (or drawings) as textures
  - Used a lot in film industry!
- Multiple images
  - View-dependent texturing (advanced topic)
- Perspective Mapping
  - Re-project photo on its 3D environment



# Projective Texturing: Examples



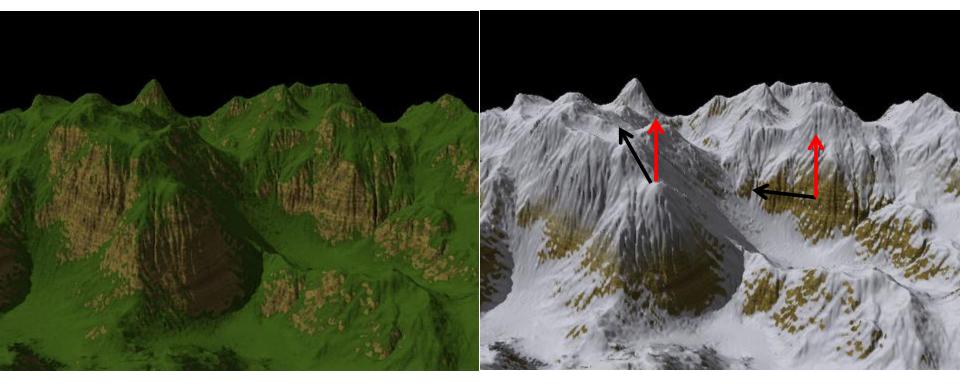
### Slope-Based Mapping

#### Definition

Depends on surface normal and predefined vector

#### Example

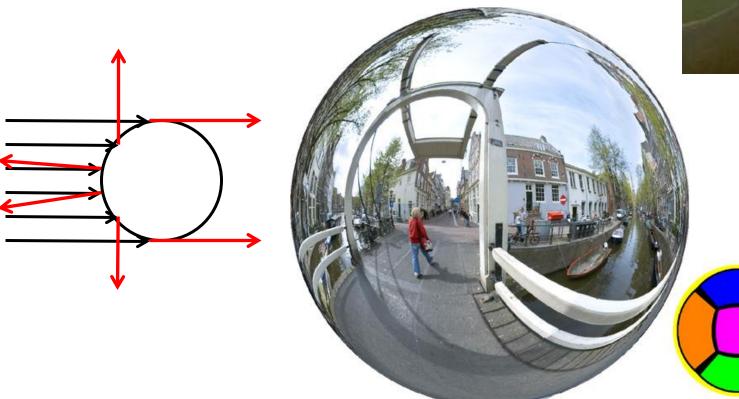
- $-\alpha = n \cdot \omega$
- return  $\alpha$  flatColor +  $(1 \alpha)$  slopeColor;



# **Environment Map**

#### Spherical Map

- Photo of a reflective sphere (gazing ball)
- Photos with a fish-eye camera
  - Only gives hemi-sphere mapping





### **Environment Map**

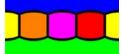
#### Latitude-Longitude Map

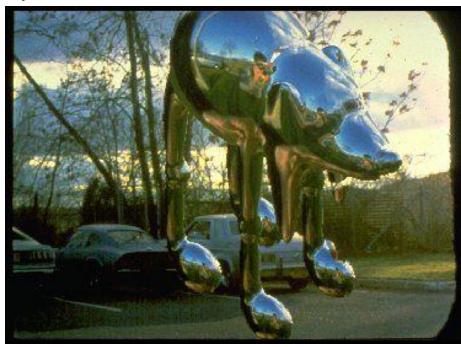
- Remapping 2 images of reflective sphere
- Photo with an environment camera

#### Algorithm

- If no intersection found, use ray direction to find background color
- Cartesian coords of ray dir. → spherical coords → uv tex coords







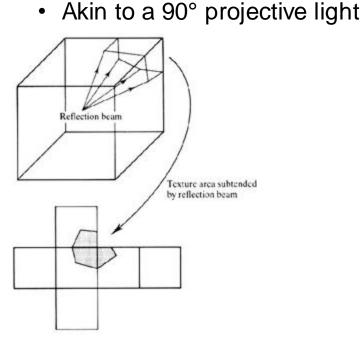
### **Environment Map**

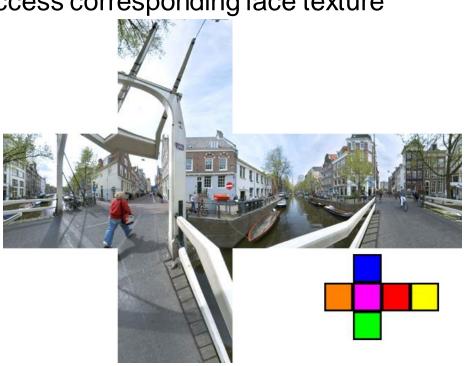
#### Cube Map

- Remapping 2 images of reflective sphere
- Photos with a perspective camera

#### Algorithm

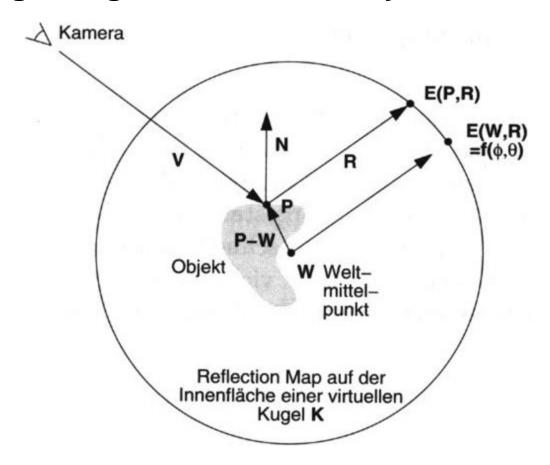
- Find main axis (-x, +x, -y, +y, -z, +z) of ray direction
- Use other 2 coordinates to access corresponding face texture





### Reflection Map Rendering

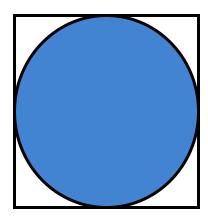
- Spherical parameterization
- O-mapping using reflected view ray intersection



# Reflection Map Parameterization

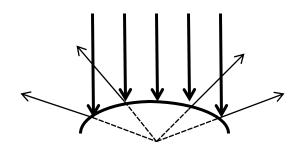
### Spherical mapping

- Single image
- Bad utilization of the image area
- Bad scanning on the edge
- Artifacts, if map and image do not have the same view point



#### Double parabolic mapping

- Yields spherical parameterization
- Subdivide in 2 images (front-facing and back-facing sides)
- Less bias near the periphery
- Arbitrarily reusable
- Supported by OpenGL extensions



# Reflection Mapping Example



Terminator II motion picture

# Reflection Mapping Example II

#### Reflection mapping with Phong reflection

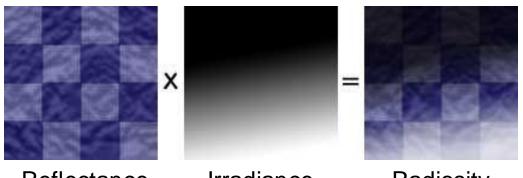
- Two maps: diffuse & specular
- Diffuse: index by surface normal
- Specular: indexed by reflected view vector



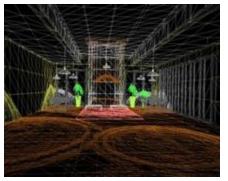
# Light Maps

#### Light maps (e.g. in Quake)

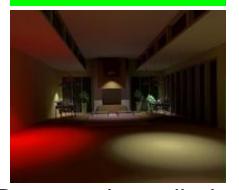
- Pre-calculated illumination (local irradiance)
  - Often very low resolution: smoothly varying
- Multiplication of irradiance with base texture
  - Diffuse reflectance only
- Provides surface radiosity
  - View-independent out-going radiance
- Animated light maps
  - Animated shadows, moving light spots, etc...



Reflectance Irradiance Radiosity  $B(x) = \rho(x) E(x) = \pi L_o(x)$ 







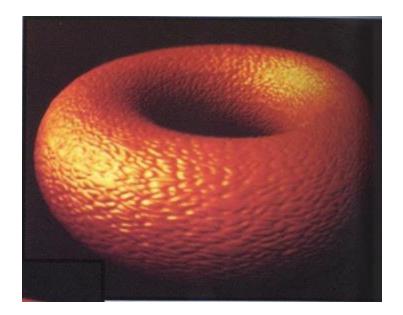
Representing radiosity in a mesh or texture

# **Bump Mapping**

#### Modulation of the normal vector

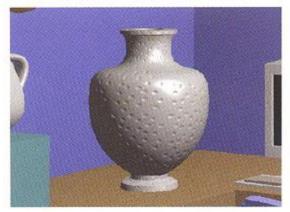
- Surface normals changed only
  - Influences shading only
  - No self-shadowing, contour is not altered

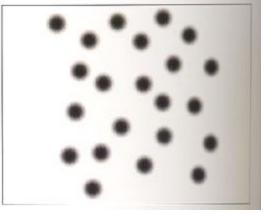




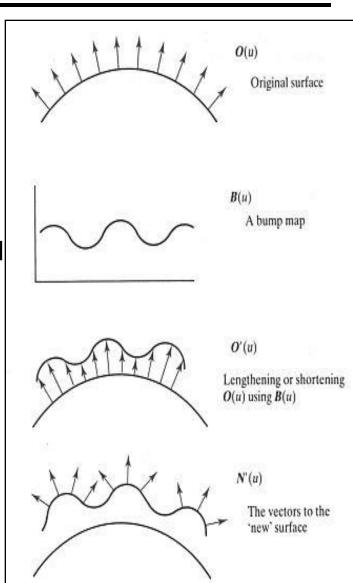
# **Bump Mapping**

- Original surface: O(u,v)
  - Surface normals are known
- Bump map:  $B(u,v) \in R$ 
  - Surface is offset in normal direction according to bump map intensity
  - New normal directions N'(u,v) are calculated based on virtually displaced surface O'(u,v)
  - Original surface is rendered with new normals N'(u,v)





Grey-valued texture used for bump height



# Bump Mapping

$$O'(u, v) = O(u, v) + B(u, v) \frac{N}{|N|}$$
- Normal is cross-product of derivatives:

$$O'_{u} = O_{u} + B_{u} \frac{N}{|N|} + B \left(\frac{N}{|N|}\right)_{u}$$

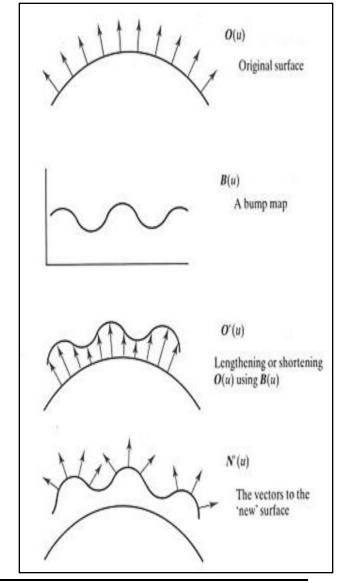
$$O'_{v} = O_{v} + B_{v} \frac{N}{|N|} + B \left(\frac{N}{|N|}\right)_{v}$$

 If B is small (i.e., the bump map displacement function is small compared to its spatial extent) the last term in each equation can be ignored

$$N'(u,v) = O_u \times O_v + B_u \left(\frac{N}{|N|} \times O_v\right) + B_v \left(O_u \times \frac{N}{|N|}\right) + B_u B_v \left(\frac{N \times N}{|N|^2}\right)$$

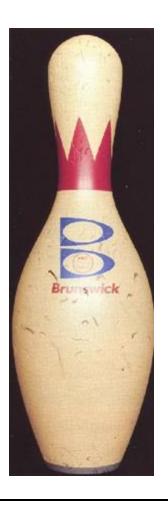
 The first term is the normal to the surface and the last is zero, giving:  $D = B_{\nu}(N \times O_{\nu}) - B_{\nu}(N \times O_{\nu})$ 

N' = N + D



### **Texture Examples**

- Complex optical effects
  - Combination of multiple texture effects







RenderMan Companion





### Billboards / Transparency Map

#### Single textured polygons

- Often with opacity texture
- Rotates, always facing viewer
- Used for rendering distant objects
- Best results if approximately radially or spherically symmetric

#### Multiple textured polygons

- Azimuthal orientation: different orientations
- Complex distribution: trunk, branches, ...

