Computer Graphics

Sampling Theory & Anti-Aliasing

Philipp Slusallek

Dirac Comb Function (1)

• Constant & δ -function

Onsbereich		Ortstrequenzbereich
h(x)	- /	H(u)
K		
	h(x) = K	
	•	
~	$H(u) = K\delta(u)$	
Konstante Funktion		Delta-Funktion
h(x)		H(u)
		К
	$h(x) = K\delta(x)$	
	0•	
	H(u) = K	-
Delta-Funktion		Konstante Funktion
h(x)		H(u)
	$h(x) = \sum_{n=1}^{\infty} S(x_n + h_n)$	
	$n(x) = \sum_{k=-\infty}^{\infty} o(x - k\Delta x)$	· · · · · · · · · · · · · · · · · · ·
	$H(u) = \frac{1}{\lambda u} \sum_{k=1}^{\infty} \delta\left(u - \frac{k}{\lambda}\right)$	$\frac{1}{\Delta \mathbf{r}}$ \mathcal{U}
Kamm-Funktion	$\Delta x = \infty$ Δx	Kamm-Funktion

 Comb/Shah function

Dirac Comb (2)

• Constant & δ -Function

- Duality

$$f(x) = K$$

$$F(\omega) = K\delta(\omega)$$

And vice versa

Comb function

- Duality: the dual of a comb function is again a comb function
 - Inverse wavelength
 - Amplitude scales with inverse wavelength

Sampling

Continuous function

- Assume band-limited
- Finite support of Fourier transform
 - Depicted symbolically here as triangle-shaped finite spectrum (not meant to be a tent function)

Sampling at discrete points

- Multiplication with Comb function in spatial domain
- Corresponds to convolution in Fourier domain

 \Rightarrow Multiple copies of the original spectrum (convolution theorem!)

• Frequency bands overlap?

- No : Sampling was high enough
- Yes: aliasing artifacts

Reconstruction

- Only original frequency band desired
- Filtering
 - In Fourier domain:
 - Multiplication with windowing function around origin (low-pass filter)
 - In spatial domain
 - Convolution with inverse Fourier transform of windowing function

Optimal filtering function

- Box function in Fourier domain
- Corresponds to sinc in spatial domain
 - Unlimited region of support
 - Spatial domain only allows approximations due to finite support of practical filters

Reconstruction Filter

 Simply cutting off the spatial support of the sinc function to limit support is NOT a good solution

- Re-introduces high-frequencies \Rightarrow spatial ringing

Sampling and Reconstruction

Sampling and Reconstruction

Sampling at Too Low Frequency

Sampling at Too Low Frequency

Aliasing

- High frequency components from the copies appear as low frequencies for the reconstruction process
- In Fourier space:
 - Original spectrum
 - Sampling comb
 - Resulting spectrum
 - Reconstruction filter
 - Reconstructed spectrum

Aliasing in 1D

Spatial frequency < Nyquist

Spatial frequency > Nyquist

Spatial frequency = Nyquist 2 samples / period

Spatial frequency >> Nyquist

Aliasing in 2D

[wikipedia]

This original image sampled at these locations yields this reconstruction.

Aliasing in 2D

- Spatial sampling ⇒ repeated frequency spectrum
- Spatial conv. with box filter \Rightarrow spectral mult. with sinc

(a) Simulation of a perfect line

(c) Simulation of a jagged line

(d) Fourier transform of (c)

Causes for Aliasing

- It all comes from sampling at discrete points
 - Multiplication with comb function
 - Comb function: replicates the frequency spectrum
- Issue when using non-band-limited primitives
 - E.g., hard edges \rightarrow infinitely high frequencies
- In reality, integration over finite region necessary
 - E.g., finite pixel size in sensor, integrates in the analog domain
- Computer: analytic integration often not possible
 - No analytic description of radiance or visible geometry available
- Only way: numerical integration
 - Estimate integral by taking multiple point samples, average
 - · Leads to aliasing
 - Computationally expensive & approximate
- Important:
 - Distinction between sampling errors and reconstruction errors

Sampling Artifacts

Spatial aliasing

- Staircases, Moiré patterns (interference), etc...

Solutions

- Increasing the sampling rate
 - OK, but we have infinite frequencies at sharp edges
- Post-filtering (after reconstruction)
 - Too late, does not work only leads to blurred staircases
- Pre-filtering (blurring) of sharp features in *analog* domain (edges)
 - Slowly make geometry "fade out" at the edges?
 - Correct solution in principle, but blurred images might not be useful
 - Analytic low-pass filtering hard to implement
- Super-sampling (see later)
 - On the fly re-sampling: densely sample, filter, down sample

Sampling Artifacts in Time

- Temporal aliasing
 - Video of cartwheel, ...

Solutions

- Increasing the frame rate
 - OK
- Post-filtering (averaging several frames)
 - Does not work creates replicas of details
- Pre-filtering (motion blur)
 - Should be done on the original analog signal
 - Possible for simple geometry (e.g., cartoons)
 - Problems with texture, etc...
- Super-sampling (see later)

Antialiasing by Pre-Filtering

Filtering before sampling

- Analog/analytic original signal
- Band-limiting the signal
- Reduces Nyquist frequency for chosen sampling-rate
- Ideal reconstruction
 - Convolution with sinc

Practical reconstruction

- Convolution with
 - Box filter, Bartlett (tent)
 - \rightarrow Reconstruction error

Sources of High Frequencies

- Geometry
 - Edges, vertices, sharp boundaries
 - Silhouettes (view dependent)

— ...

- Texture
 - E.g., checkerboard pattern, other discontinuities, ...
- Illumination
 - Shadows, lighting effects, projections, ...

Analytic filtering almost impossible

- Even with the simplest filters

Comparison

Analytic low-pass filtering (pixel/triangle overlap)

- Ideally eliminates aliasing completely
- Complex to implement
 - Compute distance from pixel to a line
 - Weighted or unweighted area evaluation
 - Filter values can be stored in look-up tables
 - · Fails at corners
 - Possibly taking into account slope
- Over-/Super-sampling
 - Very easy to implement
 - Does not eliminate aliasing completely
 - Sharp edges contain infinitely high frequencies
 - But it helps: …

Re-Sampling Pipeline

Assumption

- Energy in higher frequencies typically decreases quickly
- Idea: Reduced aliasing by sampling at higher frequency

Algorithm

- Super-sampling
 - Sample continuous signal with high frequency f_1
 - Aliasing (only here!) with energy beyond f_1 (assumed to be small)
- Reconstruction of signal
 - Filtering with $g_1(x)$: e.g., convolution with $sinc_{f1}$
 - Exact representation with sampled values !!
- Analytic low-pass filtering of signal
 - Filtering with filter $g_2(x)$ where $f_2 \ll f_1$
 - Signal is now band-limited w.r.t. f_2
- Re-sampling with a sampling frequency that is compatible with f_2
 - No additional aliasing
- Filters $g_1(x) \& g_2(x)$ can be combined

Super-Sampling in Practice

Regular super-sampling

- Averaging of N samples per pixel
- N: 4 (quite good already), 16 (often sufficient)
- Samples: rays, z-buffer, motion, reflection, ...
- Filter weights
 - Box filter
 - Others: B-spline, pyramid (Bartlett), hexagonal, ..
- Sampling Patterns (left to right)
 - Regular: aliasing likely
 - Random: often clumps, incomplete coverage
 - Poisson Disc: close to perfect, but can be costly
 - Jittered: randomized regular sampling
 - Most often (in HW): rotated grid pattern

Super-Sampling Caveats

Popular mistake

- Sampling at the corners of every pixel
- Pixel color by averaging from corners
- Free super-sampling ???

Problem

- Wrong reconstruction filter !!!
- Same sampling frequency, but post-filtering with a tent function
- Blurring: loss of information

Post-reconstruction blur

1x1 Sampling, 3x3 Blur

1x1 Sampling, 7x7 Blur

There is no "free" Super-sampling

Adaptive Super-Sampling

- Idea: locally adapt sampling density
 - Slowly varying signal (mostly low frequencies): low sampling rate
 - Strong changes (mostly high frequencies): high sampling rate
- Decide sampling density locally
- Decision criterion:
 - Differences of pixel values
 - Contrast (relative difference)
 - |A-B| / (|A|+|B|)
 - Others

Adaptive Super-Sampling

- Recursive algorithm
 - Sampling at pixel corners and center
 - Decision criterion for corner-center pairs
 - Differences, contrast, object/shader-IDs, ...
 - Subdivide quadrant by adding 3 diag. points
 - Filtering with weighted averaging
 - Tile: ¼ from each quadrant
 - Leaf quadrant: ¹/₂ (center + corner)
 - Box filter with final weight proport. to area \rightarrow

 $\frac{1}{4} \left(\frac{A+E}{2} + \frac{D+E}{2} + \frac{1}{4} \left[\frac{F+G}{2} + \frac{B+G}{2} + \frac{H+G}{2} + \frac{1}{4} \left\{ \frac{J+K}{2} + \frac{G+K}{2} + \frac{L+K}{2} + \frac{E+K}{2} \right\} \right] \\ + \frac{1}{4} \left[\frac{E+M}{2} + \frac{H+M}{2} + \frac{N+M}{2} + \frac{1}{4} \left\{ \frac{M+Q}{2} + \frac{P+Q}{2} + \frac{C+Q}{2} + \frac{R+Q}{2} \right\} \right] \right)$

Extension

- Jittering of sample points

Stochastic Super-Sampling

Problems with regular super-sampling

- Nyquist frequency for aliasing only shifted
- Expensive: e.g., 4-fold or 16-fold effort
- Non-adaptive: same effort everywhere
- Too regular: reduction of effective number of axis-aligned levels
- Introduce irregular sampling pattern

 $0 \rightarrow 4/16 \rightarrow 8/16 \rightarrow 12/16 \rightarrow 16/16$:

Up to 17 levels: better, but noisy

•

0

Stochastic Sampling

Requirements

- Even sample distribution: no clustering
- Little correlation between positions: no alignment
- Incremental generation: on demand as needed

Generation of samples

- Poisson-disk sampling
 - Random generation of samples
 - Rejection if closer than min distance to other samples
- Jittered sampling
 - Random perturbation from regular positions
- Stratified sampling
 - Subdivision into areas with one random sample in each
 - Improves even distribution
- Quasi-random numbers (Quasi-Monte Carlo)
 - E.g. Halton sequence
 - Advanced feature: see RIS course for more details

Poisson-Disk Sample Distribut.

- Motivation
 - Distribution of the optical receptors on the retina (here: ape)

Distribution of the photo-receptors

Fourier analysis

Stochastic Sampling

• Slowly varying function in sample domain

- Closely reconstructs target value with few samples

Quickly varying function in sample domain

- Transforms energy in high-frequency bands into noise
- Reconstructs average value as sample count increases

Examples

Spatial sampling: triangle comb

- (c) 1 sample/pixel, no jittering: aliasing
- (d) 1 spp, jittering: noise
- (e) 16 spp, no jittering: less aliasing
- (f) 16 spp, jittering: less noise

· //	0.0	R	0	10	0	10
0 V	0	180	0	10	0	10
•	D	100	•		0	6
• 10	0		0		0	
· /	0		0	VAU	0	12
o 1/1	10 01	17203	01	vax	d	122

Temporal sampling: motion blur

- (a) 1 time sample, no jittering: aliasing
- (b) 1 time sample, jittering/pixel: noise
- (c) 16 samples, no jittering: less aliasing
- (d) 16 samples, jittering/pixel: less noise

Comparison

• Regular, 1x1

- Regular, 3x3
- Regular, 7x7

• Jittered, 3x3

• Jittered, 7x7

