Computer Graphics - Splines -

Philipp Slusallek

Curves

Curve descriptions

- Explicit functions

• $y(x) = \pm \operatorname{sqrt}(r^2 - x^2)$, restricted domain ($x \in [-1, 1]$)

- Implicit functions
 - $x^2 + y^2 = r^2$

unknown solution set

- Parametric functions
 - $x(t) = r \cos(t), y(t) = r \sin(t), t \in [0, 2\pi]$
 - Flexibility and ease of use

Typically, use of polynomials

- Avoids complicated functions (e.g., pow, exp, sin, sqrt)
- Typically, use of polynomials with low degree

Curves

Curve descriptions

- Explicit functions

• $y(x) = \pm \operatorname{sqrt}(r^2 - x^2)$, restricted domain ($x \in [-1, 1]$)

- Implicit functions
 - $x^2 + y^2 = r^2$

unknown solution set

- Parametric functions
 - $x(t) = r \cos(t), y(t) = r \sin(t), t \in [0, 2\pi]$
 - Flexibility and ease of use

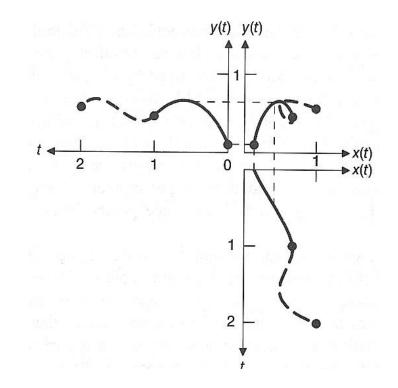
Typically, use of polynomials

- Avoids complicated functions (e.g., pow, exp, sin, sqrt)
- Typically, use of polynomials with low degree

Parametric curves

Separate function in each coordinate

- Parameterized over an additional variable t (think: time)
 - Describes movement of a particle along the curve
 - But we are mostly interested in the resulting curve itself
- $\ln 3D: f(t) = (x(t), y(t), z(t))$



Monomials

Monomial basis

- Simple basis: 1, t, t^2 , ... (t usually in [0 .. 1])

Polynomial representation

$$\underline{P}(t) = \begin{pmatrix} \underline{x}(t) & \underline{y}(t) & \underline{z}(t) \end{pmatrix} = \sum_{i=0}^{n} t^{i} \underline{A}_{i} \rightarrow \text{Coefficients } \in \mathbb{R}^{3}$$
Monomials

- Coefficients can be determined from a sufficient number of constraints (e.g., interpolation of given points)
 - Given (n+1) parameter values t_i and points P_i
 - Solution of a linear system in the A_i possible, but inconvenient
- Matrix representation

$$P(t) = (x(t) \quad y(t) \quad z(t)) = T(t) A$$

= $[t^{n} \quad t^{n-1} \quad \cdots \quad 1] \begin{bmatrix} A_{x,n} & A_{y,n} & A_{z,n} \\ A_{x,n-1} & A_{y,n-1} & A_{z,n-1} \\ \vdots \\ A_{x,0} & A_{y,0} & A_{z,0} \end{bmatrix}$

Derivatives

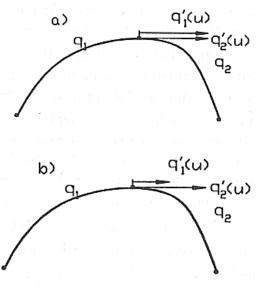
Derivative = tangent vector

Polynomial of degree (n-1)

$$P'(t) = (x'(t) \ y'(t) \ z'(t)) = T'(t) A$$

 $= [nt^{n-1} \ (n-1)t^{n-2} \ \cdots \ 1 \ 0] \begin{bmatrix} A_{x,n} \ A_{y,n-1} \ A_{z,n} \\ A_{x,n-1} \ A_{y,n-1} \ A_{z,n-1} \\ \vdots \\ A_{x,0} \ A_{y,0} \ A_{z,0} \end{bmatrix}$

- Continuity and smoothness between two parametric curves
 - $C^0 = G^0 = same point$
 - Parametric continuity C¹
 - Tangent vectors are identical \rightarrow (a)
 - Geometric continuity G¹
 - Same direction of tangent vectors only \rightarrow (b)
 - Similar for higher order derivatives



More on Continuity

• At one point:

Geometric Continuity:

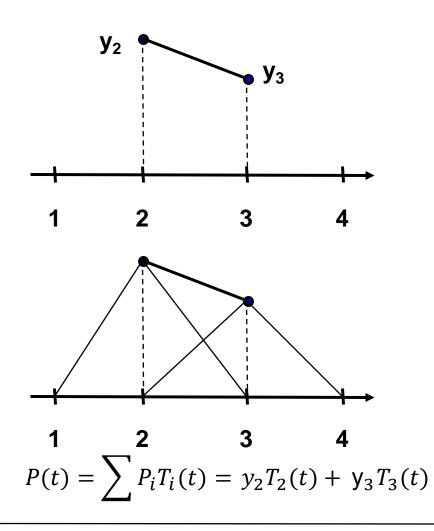
- G0: curves are joined together at that point
- G1: first derivatives are proportional at joint point
 - Same direction but not necessarily same length
- G2: first and second derivatives are proportional

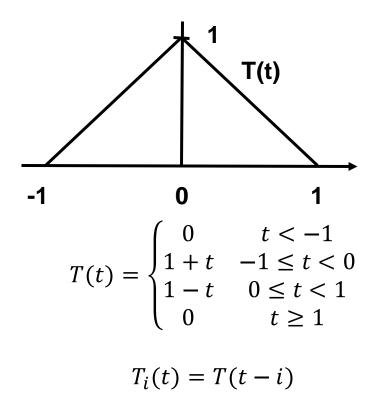
Parametric Continuity:

- C0: curves are joined
- C1: first derivative equal
- C2: first and second derivatives are equal.
 - If t is the time, this implies the acceleration is continuous.
- Cn: all derivatives up to and including the nth are equal.

Linear Interpolation

• Hat Functions and Linear Splines (C0/G0 continuity)





Can easily be generalized for arbitrary vector of parameters t_i to be interpolated with arbitrary control points $y_i \in \mathbb{R}^n$

Lagrange Interpolation

Interpolating basis functions

- Lagrange polynomials for a set of parameter values $T = \{t_0, ..., t_n\}$

$$L_{i}^{n}(t) = \prod_{\substack{j=0\\i\neq j}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}}, \quad \text{with} \quad L_{i}^{n}(t_{j}) = \delta_{ij} = \begin{cases} 1 & i=j\\ 0 & \text{otherwise} \end{cases}$$

Properties

- Good for interpolation at given parameter values
 - At each t_i : One basis function = 1, all others = 0
- Polynomial of degree n (n factors linear in t)
 - Infinitely continuous derivatives everywhere

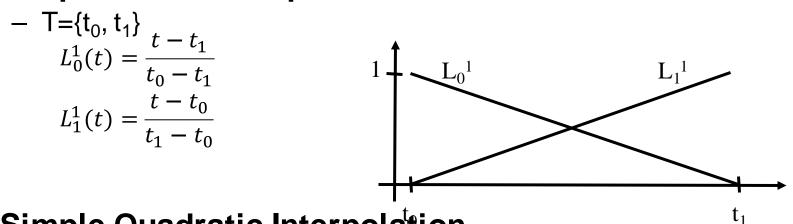
Lagrange Curves

- Use with *control points* to be interpolated as coefficients

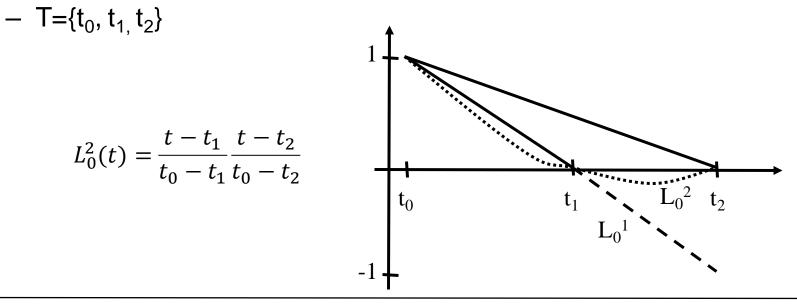
$$\underline{P}(t) = \sum_{i=0}^{n} L_{i}^{n}(t)\underline{P}_{i}$$

Lagrange Interpolation

Simple Linear Interpolation



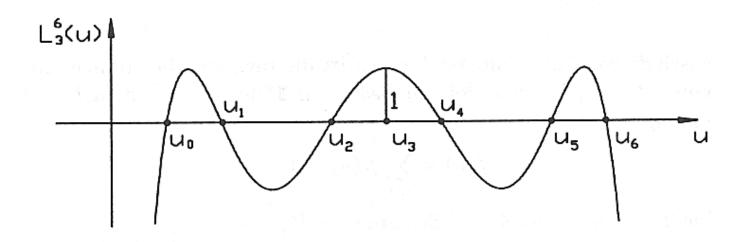
Simple Quadratic Interpolation



Problems

• Problems with a single polynomial

- Degree depends on the number of interpolation constraints
- Strong overshooting for high degree (n > 7)
- Problems with smooth joints
- Numerically unstable
- No local changes



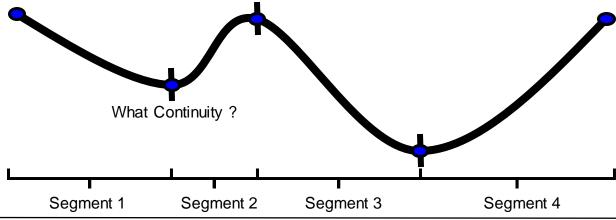
Splines

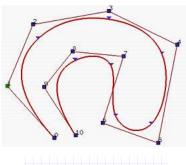
Functions for interpolation & approximation

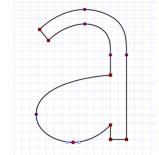
- Standard curve and surface primitives in 3D modeling & fonts
- Key frame and in-betweens in animations
- Filtering and reconstruction of images

Historically

- Name for a tool in ship building
 - Flexible metal strip that tries to stay straight
- Within computer graphics:
 - Piecewise polynomial function (e.g., cubic)
 - Decouples continuity, degree, and #control points



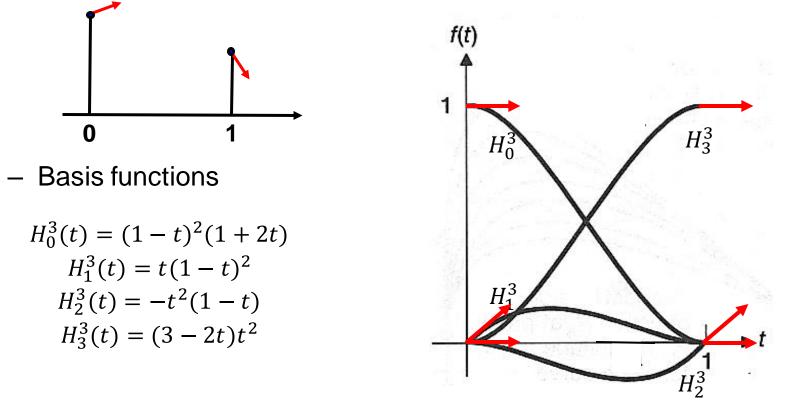




Hermite Interpolation

Hermite Basis (cubic)

- Interpolation of position P and tangent P' information for t= {0, 1}
- Very easy to piece together with G1/C1 continuity



Hermite Interpolation

Properties of Hermite Basis Functions

- $H_0 (H_3)$ interpolates smoothly from 1 to 0 (0 to 1)
- H_0 and H_3 have zero derivative at t = 0 and t = 1
 - No contribution to derivative (only via H_1 and H_2)
- H_1 and H_2 are zero at t = 0 and t = 1
 - No contribution to position (only via H_0 and H_3)
- $H_1(H_2)$ has slope 1 at t = 0 (t = 1)
 - Unit factor for specified derivative vector

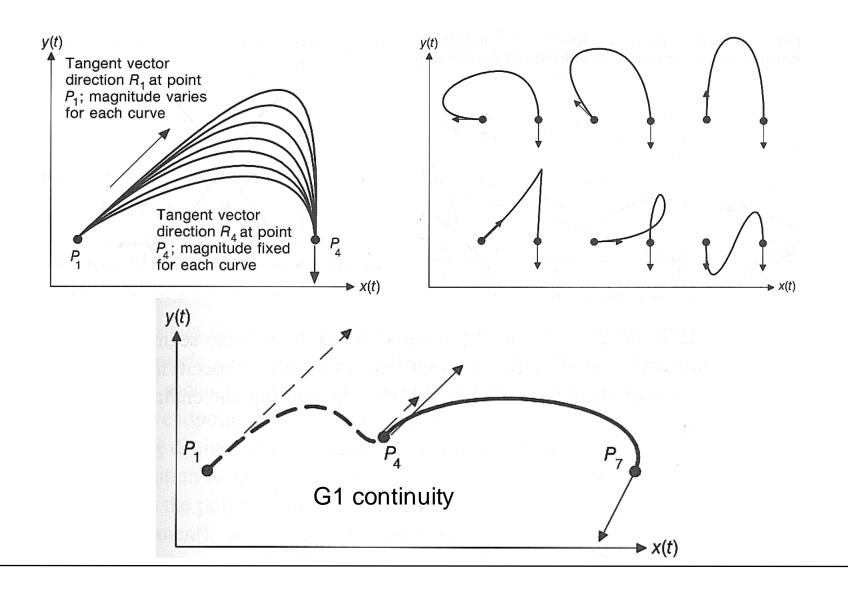
Hermite polynomials

- $P_0, P_1 \text{ are positions} \in \mathbb{R}^3$
- $-P_0$, P_1 are derivatives (tangent vectors) $\in \mathbb{R}^3$

$$\underline{P}(t) = P_0 H_0^3(t) + P_0^{'} H_1^3(t) + P_1^{'} H_2^3(t) + P_1 H_3^3(t)$$

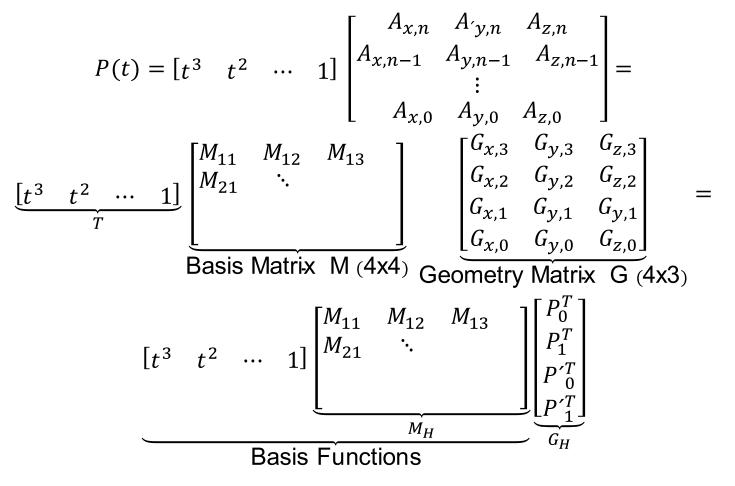


Examples: Hermite Interpolation



Matrix Representation

Matrix representation



Matrix Representation

• For cubic Hermite interpolation we obtain:

$$P_0^T = (0 \quad 0 \quad 0 \quad 1)M_H G_H$$

$$P_1^T = (1 \quad 1 \quad 1 \quad 1)M_H G_H$$

$$P_0^T = (0 \quad 0 \quad 1 \quad 0)M_H G_H$$

$$P_1^T = (3 \quad 2 \quad 1 \quad 0)M_H G_H$$
or
$$\begin{pmatrix} P_0^T \\ P_1^T \\ P_0 \\ P_1 \end{pmatrix} = G_H = \begin{pmatrix} 0 \quad 0 \quad 0 \quad 1 \\ 1 \quad 1 \quad 1 \quad 1 \\ 0 \quad 0 \quad 1 \quad 0 \\ 3 \quad 2 \quad 1 \quad 0 \end{pmatrix} M_H G_H$$

• Solution:

- Two matrices must multiply to unit matrix

$$M_{H} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

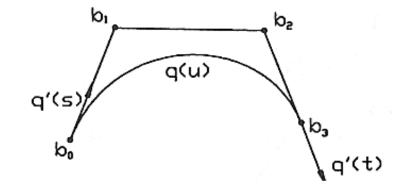
Bézier

• Bézier Basis [deCasteljau 59, Bézier 62]

- Different curve representation
- Start and end point
- 2 point that are approximated by the curve (cubics)

$$-P_0' = 3(b_1 - b_0)$$
 and $P_1' = 3(b_3 - b_2)$

• Factor 3 due to derivative of t³



$$G_{H} = \begin{bmatrix} P_{0^{T}} \\ P_{1^{T}} \\ P_{0^{T}}' \\ P_{1^{T}}' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} b_{0}^{T} \\ b_{1}^{T} \\ b_{2}^{T} \\ b_{3}^{T} \end{bmatrix} = M_{HB}G_{B}$$

Basis Transformation

Transformation

$$-P(t) = TM_{H}G_{H} = TM_{H}(M_{HB}G_{B}) = T(M_{H}M_{HB})G_{B} = TM_{B}G_{B}$$

$$M_{B} = M_{H}M_{HB} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$(1)$$

$$B_{0}^{3} \qquad B_{1}^{3}$$

$$B_{1}^{3} \qquad B_{2}^{3}$$

$$(1-t)^{3}b_{0} + 3t(1-t)^{2} \ b_{1} + 3t^{2}(1-t)b_{2} + t^{3}b_{3}$$

Bézier Curves & Basis Functions

$$P(t) = \sum B_i^n(t)b_i$$

with basis functions $B_i^n(t) = {n \choose i} t^i (1-t)^{n-i}$

Bernstein-Polynomials (1)

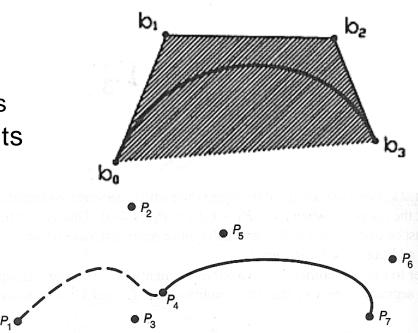
Properties: Bézier Curves

Advantages:

- End point interpolation
- Tangents explicitly specified
- Smooth joints are simple
 - P_3, P_4, P_5 collinear \rightarrow G¹ continuous
- Geometric meaning of control points
- Affine invariance
 - $\forall t: \sum_i B_i(t) = 1$
- Convex hull property
 - For 0 < t < 1: $B_i(t) \ge 0$
- Symmetry: $B_i(t) = B_{n-i}(1-t)$

Disadvantages

- Smooth joints need to be maintained explicitly
 - Automatic in B-Splines (and NURBS)



DeCasteljau Algorithm

Direct evaluation of the basis functions

- Simple but expensive

Use recursion

- Recursive definition of the basis functions

 $B_i^n(t) = \mathsf{tB}_{i-1}^{n-1}(t) + (1-t)B_i^{n-1}(t)$

- Inserting this once yields:

$$P(t) = \sum_{i=0}^{n} b_i^0 B_i^n(t) = \sum_{i=0}^{n-1} b_i^1(t) B_i^{n-1}(t)$$

- with the new Bézier points also given by a recursion:

$$b_i^k(t) = tb_{i+1}^{k-1}(t) + (1-t)b_i^{k-1}(t)$$
 and $b_i^0(t) = b_i$

DeCasteljau Algorithm

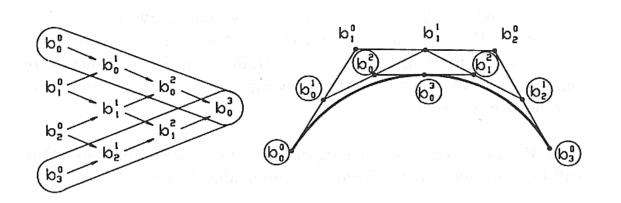
DeCasteljau-Algorithm:

Recursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein polynomials

$$P(t) = \sum_{i=0}^{n} b_i^0 B_i^n(t) = \sum_{i=0}^{n-1} b_i^1(t) B_i^{n-1}(t) = \dots = b_i^n(t) \cdot 1$$

$$b_i^k(t) = \operatorname{tb}_{i+1}^{k-1}(t) + (1-t) b_i^{k-1}(t)$$

- Example:
 - t= 0.5

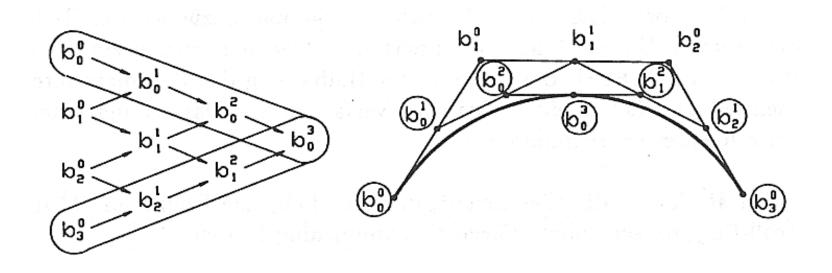


DeCasteljau Algorithm

- Subdivision using the deCasteljau-Algorithm
 - Take boundaries of the deCasteljau triangle as new control points for left/right portion of the curve

Extrapolation

- Backwards subdivision
 - Reconstruct full triangle from just one side



Catmull-Rom-Splines

• Goal

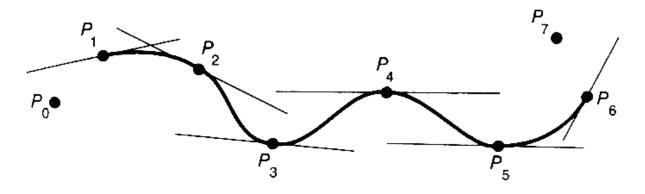
- Smooth (C¹)-joints between (cubic) spline segments

Algorithm

- Tangent at P_i given by vector from neighboring points P_{i-1} to P_{i+1}
- Can easily construct (cubic) Hermite spline between control points

Advantage

- Arbitrary number of control points
- Interpolation without overshooting
- Local control



Matrix Representation

Catmull-Rom-Spline

- Piecewise polynomial curve
- Four control points per segment
- For n control points we obtain (n-3) polynomial segments

$$\underline{P}^{i}(t) = TM_{CR}G_{CR} = T\frac{1}{2}\begin{bmatrix} -1 & 3 & -3 & 1\\ 2 & -5 & 4 & 1\\ -1 & 0 & 1 & -0\\ 0 & 2 & 0 & 0 \end{bmatrix}\begin{bmatrix} \underline{P}_{i}^{T} & \mathbf{P}_{i+1}^{T} \\ \underline{P}_{i+2}^{T} \\ \underline{P}_{i+3}^{T} \end{bmatrix}$$

Application

- Smooth interpolation of a given sequence of points
- Key frame animation, camera movement, etc.
- Only G¹-continuity
- Control points should be roughly equidistant in time

Choice of Parameterization

Problem

- Often only the control points are given
- How to obtain a suitable parameterization t_i?
- Example: Chord-Length Parameterization

$$t_0 = 0$$

$$t_i = \sum_{j=1}^{i} \operatorname{dist}(P_i - P_{i-1})$$

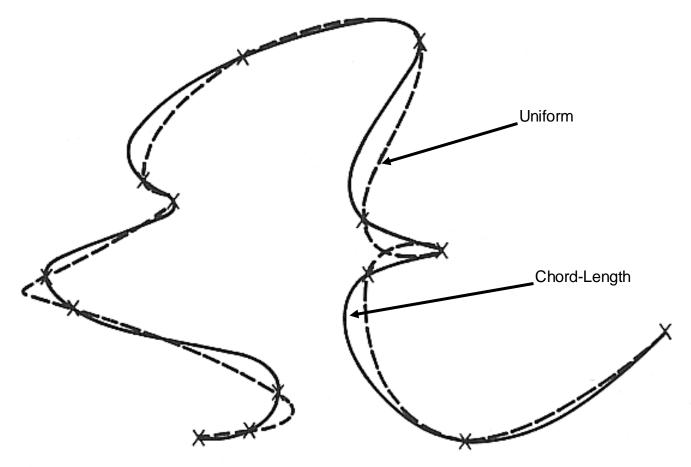
- Arbitrary up to a constant factor

Warning

- Distances are not affine invariant !
- Shape of curves changes under transformations !!

Parameterization

- Chord-Length versus uniform Parameterization
 - Analog: Think P(t) as a moving object with mass that may overshoot



Spline Surfaces

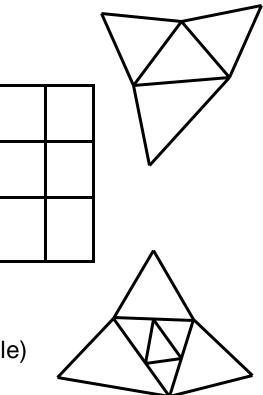
Parametric Surfaces

Same Idea as with Curves

- $\underline{P}: \mathbb{R}^2 \!\rightarrow \!\mathbb{R}^3$
- $\underline{P}(u,v) = (x(u,v), y(u,v), z(u,v))^{T} \in R^{3} (also P(R^{4}))$

Different Approaches

- Triangular Splines
 - Single polynomial in (u,v) via barycentric coordinates with respect to a reference triangle (e.g., B-Patches)
- Tensor Product Surfaces
 - · Separation into polynomials in u and in v
- Subdivision Surfaces
 - Start with a triangular mesh in R³
 - Subdivide mesh by inserting new vertices
 - Depending on local neighborhood
 - Only piecewise parameterization (in each triangle)



Idea

- Create a "curve of curves"

Simplest case: Bilinear Patch

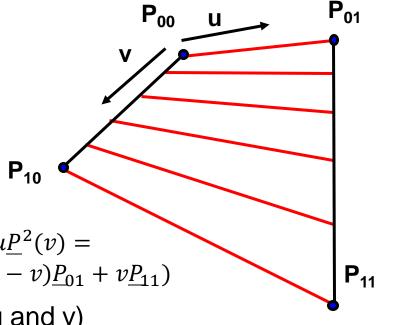
- Two lines in space $\frac{P^{1}(v) = (1 - v)\underline{P}_{00} + v\underline{P}_{10}}{\underline{P}^{2}(v) = (1 - v)\underline{P}_{01} + v\underline{P}_{11}}$
- Connected by lines

$$\underline{P}(u,v) = (1-u)\underline{P}^{1}(v) + u\underline{P}^{2}(v) = (1-u)((1-v)\underline{P}_{00} + v\underline{P}_{10}) + u((1-v)\underline{P}_{01} + v\underline{P}_{12})$$

- Bézier representation (symmetric in u and v)

$$\underline{P}(u,v) = \sum_{i,j=0}^{1} B_i^1(u) B_j^1(v) \underline{P}_{ij}$$

- Control mesh given by P_{ij}



General Case

- Arbitrary basis functions in u and v
 - Tensor Product of the function space in u and v
- Commonly same basis functions and same degree in u and v

$$\underline{P}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) B_j^n(v) \underline{P}_{ij}$$

- Interpretation
 - Curve defined by curves

$$\underline{P}(u,v) = \sum_{i=0}^{m} B_i(u) \sum_{\substack{j=0\\P_i(v)}}^{n} B_j(v) \underline{P}_{ij}$$

Symmetric in u and v

Matrix Representation

Similar to Curves

- Geometry now in a "tensor" (m x n x 3)

$$\underline{P}(u,v) = UG_{monom}V^{T} = (u^{m} \cdots u \quad 1) \begin{pmatrix} G_{nn} \cdots G_{n0} \\ \vdots & \ddots & \vdots \\ G_{0n} & \cdots & G_{00} \end{pmatrix} \begin{pmatrix} v \\ \vdots \\ v \\ 1 \end{pmatrix} = UB_{U} G_{UV}B_{V}^{T}V^{T}$$

/n n

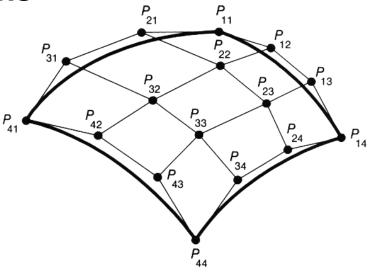
– Degree

- u: m
- v: n
- Along the diagonal (u=v): m+n
 - Not nice \rightarrow "Triangular Splines"

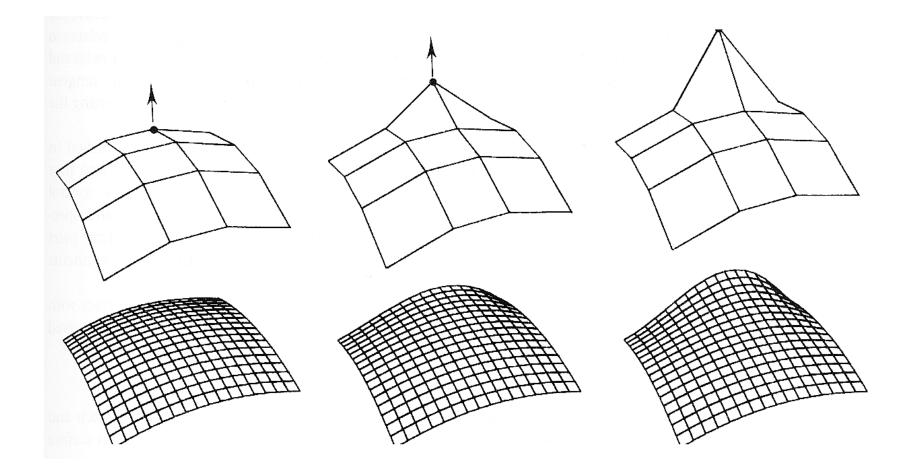
Properties Derived Directly From Curves

• Bézier Surface:

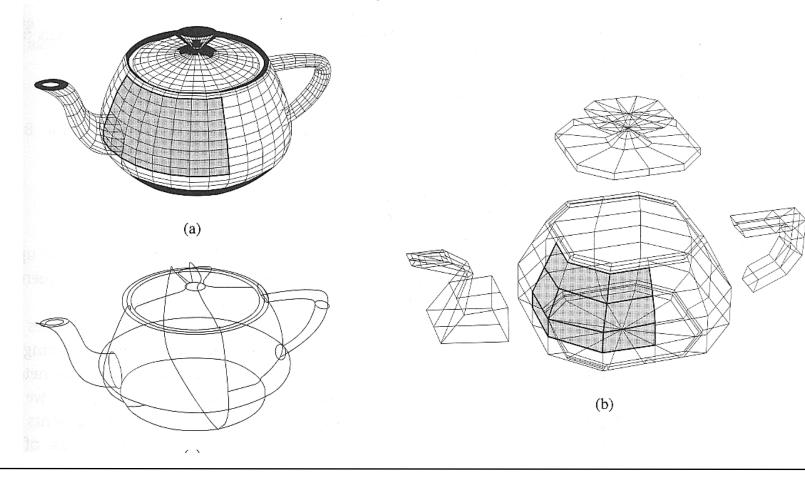
- Surface interpolates corner vertices of mesh
- Vertices at edges of mesh define boundary curves
- Convex hull property holds
- Simple computation of derivatives
- Direct neighbors of corners vertices define tangent plane
- Similar for Other Basis Functions



Modifying a Bézier Surface



- Representing the Utah Teapot as a set continuous Bézier patches
 - http://www.holmes3d.net/graphics/teapot/



Operations on Surfaces

deCausteljau/deBoor Algorithm

- Once for u in each column
- Once for v in the resulting row
- Due to symmetry also in other order

• Similarly, we can derive the related algorithms

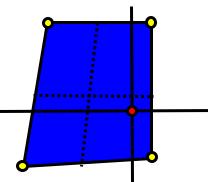
- Subdivision
- Extrapolation
- Display

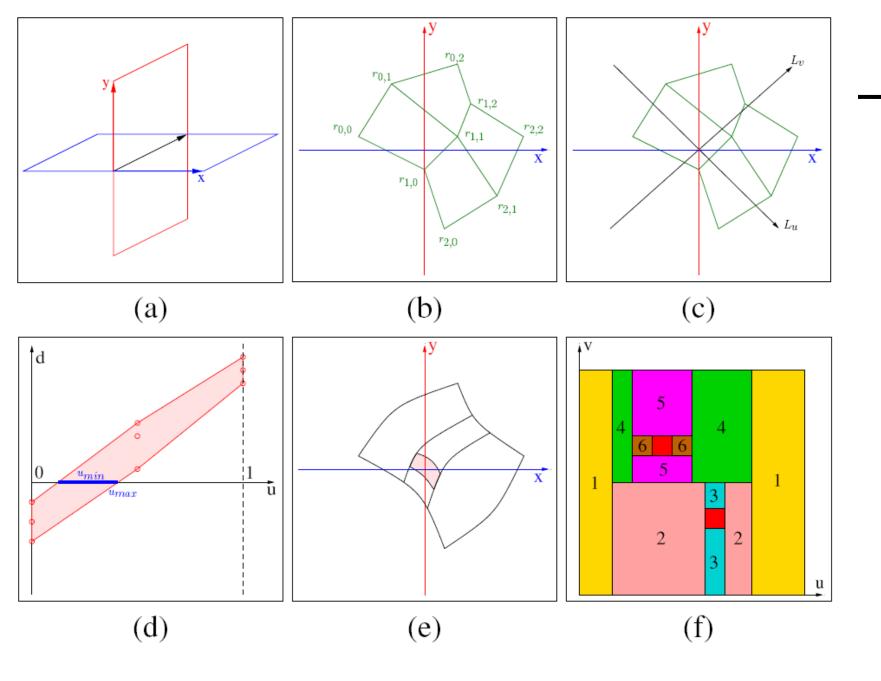
— ...

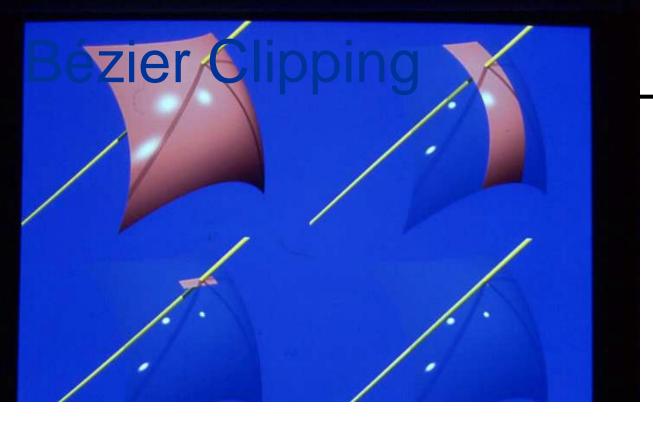
Ray Tracing of Spline Surfaces

Several approaches

- Tessellate into many triangles (using deCasteljau or deBoor)
 - Often the fasted method
 - May need enormous amounts of memory
- Recursive subdivision
 - Simply subdivide patch recursively
 - Delete parts that do not intersect ray (Pruning)
 - Fixed depth ensures crack-free surface
 - May cache intermediate results for next rays
- Bézier Clipping [Sederberg et al.]
 - Find two orthogonal planes that intersect in the ray
 - Project the surface control points into these planes
 - Intersection must have distance zero
 - ➔ Root finding
 - → Can eliminate parts of the surface where convex hull does not intersect ray
 - Must deal with many special cases rather slow







Higher Dimensions

Volumes

- Spline: $R^3 \rightarrow R$
 - Volume density
 - Rarely used
- Spline: $R^3 \rightarrow R^3$
 - Modifications of points in 3D
 - Displacement mapping
 - Free Form Deformations (FFD)

