Computer Graphics

- Rasterization -

Philipp Slusallek

Rasterization

- Definition

- Given some 2D geometry (point, line, circle, triangle, polygon,...), specify which pixels of a raster display each primitive covers
- Often also called "scan-conversion"
- Anti-aliasing: instead of only fully-covered pixels (single sample), specify what parts of a pixel is covered (multi/super-sampling)
- Perspectives
- OpenGL lecture: from an application programmer's point of view
- This lecture: from a graphics package implementer's point of view
- Looking at rasterization of (i) lines and (ii) polygons (areas)
- Usages of rasterization in practice
- 2D-raster graphics, e.g. Postscript, PDF, SVG, ...
- 3D-raster graphics, e.g. SW rasterizers (Mesa, OpenSWR), HW
- 3D volume modeling and rendering
- Volume operations (CSG operations, collision detection)
- Space subdivision (spatial indices): construction and traversal

Rasterization

- Assumptions

- Pixels are sample points on a 2D integer grid
- OpenGL: cell bottom-left, integer-coordinate - X11, Foley: at the cell center (we will use this)
- Simple raster operations
- Just setting pixel values or not (binary decision)

- More complex operations later: compositing/anti-aliasing
- Endpoints snapped to (sub-)pixel integer coordinates
- Simple and consistent computations with fixed-point arithmetic
- Limiting to lines with gradient/slope $|\mathrm{m}| \leq 1$ (mostly horizontal)
- Separate handling of horizontal and vertical lines
- For mostly vertical, swap x and $y(|1 / m| \leq 1)$, rasterize, swap back
- Special cases in SW, trivial in HW :-)
- Line width is one pixel
- $|\mathrm{m}| \leq 1$: 1 pixel per column (X-driving axis)
- $|\mathrm{m}|>1$: 1 pixel per row (Y-driving axis)

Lines: As Functions

- Specification
- Initial and end points: $\left(x_{b}, y_{b}\right),\left(x_{e}, y_{e}\right),(d x, d y)=\left(x_{e}-x_{b}, y_{e}-y_{b}\right)$
- Functional form: $y=m x+B$
- End points with integer coordinates \Rightarrow rational slope $m=d y / d x$
- Goal
- Find that pixel per column whose distance to the line is smallest
- Brute-force algorithm
- Assume that +X is the driving axis \rightarrow set pixel in every column

$$
\begin{aligned}
& \text { for } x_{i}=x_{\mathrm{b}} \text { to } x_{e} \\
& y_{i}=m^{*} x_{i}+B \\
& \operatorname{setPixel}\left(x_{i}, \operatorname{Round}\left(y_{i}\right)\right) \quad / / \operatorname{Round}\left(y_{i}\right)=\operatorname{Floor}\left(y_{i}+0.5\right)
\end{aligned}
$$

- Comments
- Variables m and thus y_{i} need to be calculated in floating-point
- Not well suited for direct HW implementation
- A floating-point ALU is significantly larger in HW than integer

Lines: DDA

- DDA: Digital Differential Analyzer
- Origin of incremental solvers for simple differential equations
- The Euler method
- Per time-step: $x^{\prime}=x+\mathrm{d} x / \mathrm{d} t, y^{\prime}=y+\mathrm{d} y / \mathrm{d} t$
- Incremental algorithm
- Choose $\mathrm{dt}=\mathrm{dx}$, then per pixel
- $x_{i+1}=x_{i}+1$
- $y_{i+1}=m^{*} x_{i+1}+B=m\left(x_{i}+1\right)+B=\left(m^{*} x_{i}+B\right)+m=y_{i}+m$
- $\operatorname{setPixel}\left(x_{i+1}, \operatorname{Round}\left(y_{i+1}\right)\right)$
- Remark
- Utilization of coherence through incremental calculation
- Avoids the "costly" multiplication
- Accumulates error over length of the line
- Up to 4k additions on UHD!
- Floating point calculations may be moved to fixed point
- Must control accuracy of fixed point representation
- Enough extra bits to hide accumulated error (>>12 bits for UHD)

Lines: Bresenham (1963)

- DDA analysis
- Critical point: decision whether we need rounding up or down
- Idea
- Integer-based decision through implicit functions
- Implicit line equation
- $F(x, y)=a x+b y+c=0$
- Here with $y=m x+B=\frac{d y}{d x} x+B \quad \Rightarrow \quad 0=d y x-d x y+B d x$
- $a=d y, \quad b=-d x, \quad c=B d x$
- Results in
- $F(x, y)=d y x-d x y+d x B=0$

Lines: Bresenham

- Decision variable d (the midpoint formulation)
- Assume we are at $x=i$, calculating next step at $x=i+1$
- Measures the vertical distance of midpoint from line:

$$
\begin{aligned}
d_{i+1} & =F\left(M_{i+1}\right)=F\left(x_{i}+1, y_{i}+1 / 2\right) \\
& =a\left(x_{i}+1\right)+b\left(y_{i}+1 / 2\right)+c
\end{aligned}
$$

- Preparations for the next pixel

IF ($\mathrm{d}_{\mathrm{i}+1} \leq 0$) // Increment in x only

$d_{i+2}=d_{i+1}+a=d_{i+1}+d y \quad / /$ Incremental calculation
ELSE // Increment in x and y
$d_{i+2}=d_{i+1}+a+b=d_{i+1}+d y-d x$
$y=y+1$
ENDIF
$x=x+1$

Lines: Integer Bresenham

- Initialization

$$
\begin{aligned}
& d_{1}=F\left(x_{b}+1, y_{b}+\frac{1}{2}\right)=a\left(x_{b}+1\right)+b\left(y_{b}+\frac{1}{2}\right)+c \\
& =a x_{b}+b y_{b}+c+a+\frac{b}{2}=F\left(x_{b}, y_{b}\right)+a+\frac{b}{2}=a+\frac{b}{2}
\end{aligned}
$$

- Because $\mathrm{F}\left(x_{b}, y_{b}\right)$ is zero by definition (line goes through $\left(x_{b}, y_{b}\right)$)
- Pixel is always set (but check consistency rules \rightarrow later)
- Elimination of fractions
- Any positive scale factor maintains the sign of $F(x, y)$
- $2 F\left(x_{b}, y_{b}\right)=2\left(a x_{b}+b y_{b}+c\right) \rightarrow d_{\text {start }}=2 a+b$
- Observation:
- When the start and end points have integer coordinates then $b=-\mathrm{d} x$ and $a=\mathrm{d} y$ are also integers
- Floating point computation can be eliminated
- No accumulated error!!

Lines: Arbitrary Directions

- 8 different cases
- Driving (active) axis: $\pm X$ or $\pm Y$
- Increment/decrement of y or x, respectively

Thick Lines

- Pixel replication
\circ
\circ
\circ
0000000
0000

```
- Problems with even-numbered widths
- Varying intensity of a line as a function of slope
\[
\begin{array}{llll}
\circ & \circ & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\]
- The moving pen
- For some pen footprints the thickness of a line might change as a function of its slope
- Should be as "round" as possible
- Real Solution: Draw 2D area
- Allows for anti-aliasing and fractional width
- Main approach these days!


\section*{Handling Start and End Points}
- End points handling (not available in current OpenGL)
- Joining: handling of joints between lines
- Bevel: connect outer edges by straight line
- Miter: join by extending outer edges to intersection
- Round: join with radius of half the line width
- Capping: handling of end point
- Butt: end line orthogonally at end point
- Square: end line with oriented square
- Round: end line with radius of half the line width
- Avoid overdraw when lines join


JOIN_BEVEL JOIN_MITER JOIN_ROUND

\section*{Bresenham: Circle}
- Eight different cases, here +X, y--

Initialization: \(x=0, y=R\)
\(F(x, y)=x^{2}+y^{2}-R^{2}\)
\(d=F(x+1, y-1 / 2)\)
IF d<0
\[
d=F(x+2, y-1 / 2)
\]

ELSE IF d>0
\[
\begin{aligned}
& d=F(x+2, y-3 / 2) \\
& y=y-1
\end{aligned}
\]

ENDIF
\(\mathrm{x}=\mathrm{x}+1\)

- Works because slope is smaller than 1
- Eight-way symmetry: only one \(45^{\circ}\) segment is needed to determine all pixels in a full circle

\section*{Reminder: Polygons}
- Types
- Triangles
- Trapezoids
- Rectangles
- Convex polygons
- Concave polygons
- Arbitrary polygons
- Holes
- Overlapping
- Two approaches
- Polygon tessellation into triangles
- Only option for OpenGL
- Must mark internal edges
so they are not drawn for outlines
- Direct scan-conversion
- Mostly in early SW algorithms


\section*{Inside-Outside Tests}
- What is the interior of a polygon?
- Jordan curve theorem
- „Any continuous simple closed curve in the plane, separates the plane into two disjoint regions, the inside and the outside, one of which is bounded."

- What to do with non-simple polygons?
- Even-odd rule (odd parity rule)
- Counting the number of edge crossings with a ray starting at the queried point \(\mathbf{P}\) till infinity

- Inside, if the number of crossings is odd

Winding
- (Non-zero) winding number rule
- Counts \# times polygon wraps around \(\mathbf{P}\)
- Signed intersections with a ray
- Inside, if the number is not equal to zero
- Differences only in the case of non-simple curves (e.g. self-intersection)


Even-odd


NZ-Winding

\section*{Triangle Rasterization}
Raster3_box (vertex v[3])
\{
    int \(x, Y\);
    bbox b;
    bound3 (v, \&b) ;
    for ( \(y=b . y m i n ; y<b . y m a x ; ~ y++\) )
        for ( \(\mathrm{x}=\mathrm{b} . \mathrm{xmin} ; \mathrm{x}<\mathrm{b} . \mathrm{xmax} ; \mathrm{x}++\) )
        if (inside \((v, x, y)) / /\) upcoming \(/\)
\(\quad\) fragment \((x, y) ;\)
\}
- Brute-force algorithm
- Iterate over all pixels within bounding box
- Possible approaches for dealing with scissoring
- Scissoring: Only draw on AA-Box of the screen (region of interest)
- Test triangle for overlap with scissor box, otherwise discard
- Use intersection of scissor and bounding box, otherwise as above
- Important if clipping only against enlarged region!

\section*{Rasterization w/ Edge Functions}
- Approach (Pineda, `88)
- Implicit edge functions for every edge \(F_{i}(x, y)=a x+b y+c\)
- Point is inside triangle, if every \(F_{i}(x, y)\) has the same sign
- Perfect for parallel evaluation at many points

- Particularly with wide SIMD machines (GPUs, SIMD CPU instructions)
- Requires "triangle setup": Computation of edge function ( \(a, b, c\) )
- Evaluation can also be done in homogeneous coordinates
- Hierarchical approach
- Can be used to efficiently check large rectangular blocks of pixels
- Divide screen into tiles/bins (possibly at several levels)
- Evaluate \(F\) at tile corners
- Recurse only where necessary, possibly until subpixel level

\section*{Gap and T-Vertices}
- Observations
- Pixels set can be non-connected
- May have overlap and gaps at T-edges


Non-connected pixels: OK
Not OK: Model must be changed

\section*{Problem on Edges}
- Consistency: edge singularity (shared by 2 triangles)
- What if term \(d=a x+b y+c=0\) (pixel centers lies exactly on the line)
- For \(d<=0\) : pixels would get set twice
- Problem with some algorithms
- Transparency, XOR, CSG, ...
- Missing pixels for \(d<0\) (set by no trio.)
- Solution: "shadow" test

- Pixels are not drawn on the right and bottom edges
- Pixels are drawn on the left and upper edges
- Evaluated via derivatives \(a\) and \(b\)
- Testing for all edges also solves problem at vertices
```

inside(value d, value a, value b)
{ // ax + by + c = 0
return (d < 0) || (d == 0 \&\& !shadow (a, b));
}
shadow(value a, value b)
{
return (a>0) || (a== 0 \&\& b > 0);

```
\}

\section*{Ray Tracing vs. Rasterization}
- In-Triangle test (for common origin)
- Rasterization:
- Project to 2D, clip
- Set up 2D edge functions, evaluate for each sample (using 2D point)
- Ray tracing:
- Set up 3D edge functions, evaluate for each sample (using direction)
- The ray tracing test can also be used for rasterization in 3D
- Avoids projection \& clipping
- Enumerating scene primitives
- Rasterization (simple):
- Sequentially enumerate them all in any order
- Rasterization (advanced):
- Build (coarse) spatial index (typically on application side)
- Traverse with view frustum (large)
- Possibly one frustum for every image tile separately, when using tiled rendering
- Ray Tracing:
- Build (detailed) spatial index
- Traverse with (infinitely thin) ray or with some (typically small) frustum
- Both approaches can benefit greatly from spatial index!

\section*{Ray Tracing vs. Rasterization (II)}
- Binning
- Test to (hierarchically) find pixels likely to be covered by a primitive
- Rasterization:
- Great speedup due to very large view frustum (many pixels)
- Ray tracing (frustum tracing)
- Can speed up, depending on frustum size [Benthin'09]
- Ray Tracing (single/few rays)
- Not needed
- Conclusion
- Both algorithms can use the same in-triangle test
- In 3D, requires floating point, but boils down to 2D computation
- Both algorithms can benefit from spatial index
- Benefit depends on relative cost of in-triangle test (HW vs. SW)
- Both algorithms can benefit from 2D binning to find relevant samples
- Benefit depends on ratio of covered/uncovered samples per frustum
- Both approaches are very similar
- Different organization (size of frustum, binning)
- There is no reason RT needs to be slower for primary rays (exc. FP)

\section*{HW-Supported Ray Tracing (finally)}

Imagination-Grafikchip: 5 Mal schneller als GeForce GTX 980 Ti beim Raytracing


Fünf Mal schneller als eine GeForce GTX 980 Ti soll die Mobil-GPU PowerVR GR6500 sein, allerdings nur bei bestimmten Raytracing-Anwendungen.

Die Mobil-Grafikeinheit PowerVR GR6500 soll fünf Mal schneller arbeiten als Nvidias GeForce GTX 980 Ti bei nur einem Zehntel der Leistungsaufnahme; allerdings nur bei bestimmten Raytracing-Anwendungen.

\section*{HW-Supported Ray Tracing (finally)}
```

D Druckversion - Nvidia GeFor * +

```

«zurück zum Artike
(1.) heise online

Nvidia GeForce RTX 2070, 2080, 2080 Ti: Raytrac stolzen Preisen
20.08.2018 19.51 Uhr

Martin Fischer

\section*{AMD unveils three Radeon 6000 graphics cards with ray tracing and RTX-beating performance}

Intel's new Xe GPU will have hardware-

The RX 6800, 6800 XT and 6900 XT are coming soon.
(f)

It's time for BIG NAVI, as AMD has unveiled their new Radeon graphics cards: the \$579 RX \(6800, \$ 649\) RX \(6800 \times\) XT and \(\$ 999\) RX 6900 XT. AMD claims that the cards should meet or beat Nvidia's flagship RTX 30-series graphics cards, all the way up to the \(\$ 1499\) RTX 3090, often at lower price and while consuming less power. The 6000-series cards are also the first desktop AMD GPUs to support real-time ray tracing, variable rate shading and other DirectX 12 Ultimate features. All in all, it's an exciting package for AMD fans - and would-be Nvidia users that might have become frustrated with poor RTX 30 -series availability.
accelerated ray tracing


August 13, 2020 Intel has now confirmed that the Xe-HPG microarchitecture exists and that it will have ray tracing
besonders effizient bei Raytracing-Berechnungen```

