### **Computer Graphics**

- Introduction to Ray Tracing -

Philipp Slusallek

# Rendering Algorithms

### Rendering

- Definition: Given a 3D scene description and a camera as input,
   generate a 2D image as a view of the 3D scene from that camera
- At each pixel captures the incident light from the respective direction

### Algorithms

- Ray Tracing
  - Declarative scene description
  - Physically-based simulation of light transport
  - Throughout the scene from light sources to the camera
- Rasterization
  - Traditional procedural/imperative drawing of scene content
    - One triangle at a time (conceptually)
  - See later in the course!

## Scene Description in General

### Surface Geometry

- 3D geometry of objects in a scene
- Geometric primitives triangles, polygons, spheres, splines, ...

### Surface Appearance

- Color, texture, absorption, reflection, refraction, subsurface scattering
- Types of materials: Diffuse, mirror, glossy, glass, ...

#### Illumination

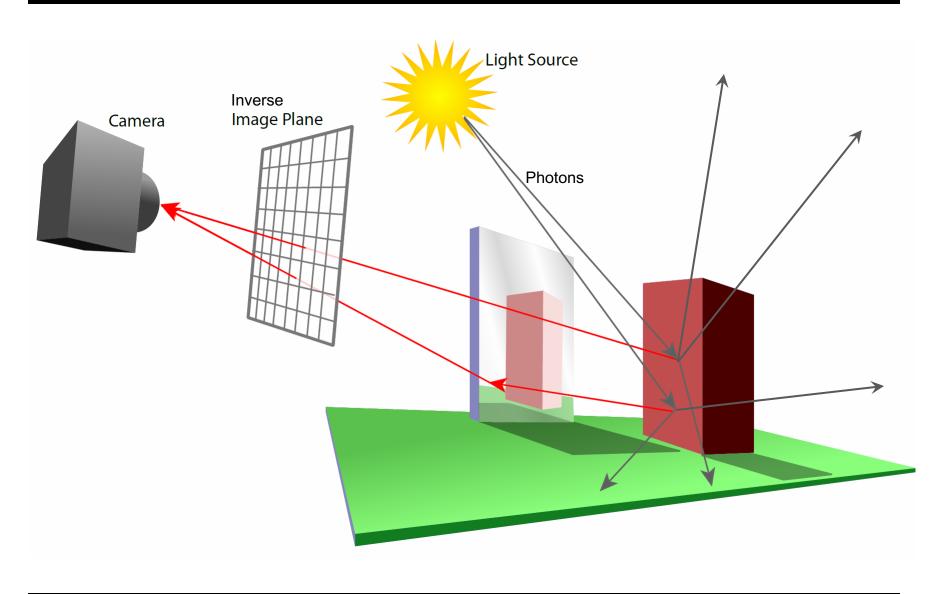
- Position and emission characteristics of light sources
- Light also reflects off of surfaces!
  - Secondary/indirect/global illumination
- Assumption: Air/empty space is totally transparent
  - Simplification that excludes scattering effects in *participating media* or *volumes,* e.g., smoke, solid object (CT scan), ...
  - See later in course

#### Camera

Viewpoint, viewing direction, field of view, resolution, ...

### **OVERVIEW OF RAY-TRACING**

# Light Transport (1)



# Light Transport (2)

### Light Distribution in a Scene

Dynamic equilibrium: As much light is absorbed as is emitted

### Forward Light Transport Simulation

- Shoot photons from the light sources into scene
- Scatter at surfaces and record when a detector is hit
  - Photons that hit the camera produce the final image
  - Most photons will not reach the camera!
- Particle or Light Tracing

### Backward Light Transport Simulation

- Start at the detector (camera)
- Trace only paths that might transport light towards camera
  - May be hard to find and connect to light sources
- Ray Tracing

# Ray Tracing Is ...

### Fundamental rendering algorithm

### Automatic, simple and intuitive

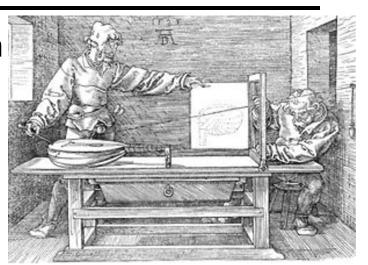
- Easy to understand and implement
- Delivers "correct" images by default

#### Powerful and efficient

- Covers many optical effects
  - Shadows, global illumination, reflections, refractions, ...
- Efficient real-time implementation in SW and now also in HW!
- Can work in parallel and distributed environments
- Logarithmic scalability with scene size: O(log n) vs. O(n)
- Output sensitive and demand-driven approach

### Concept of light rays is not new

- Empedocles (492-432 BC), Renaissance (Dürer, 1525), ...
- Used in lens design, geometric optics, neutron transport, ...



Perspective Machine, Albrecht Dürer

# Fundamental Ray Tracing Steps

### Generation of primary rays

- Rays from viewpoint along viewing directions into 3D scene
- (At least) one ray per picture element (pixel) in the image plane

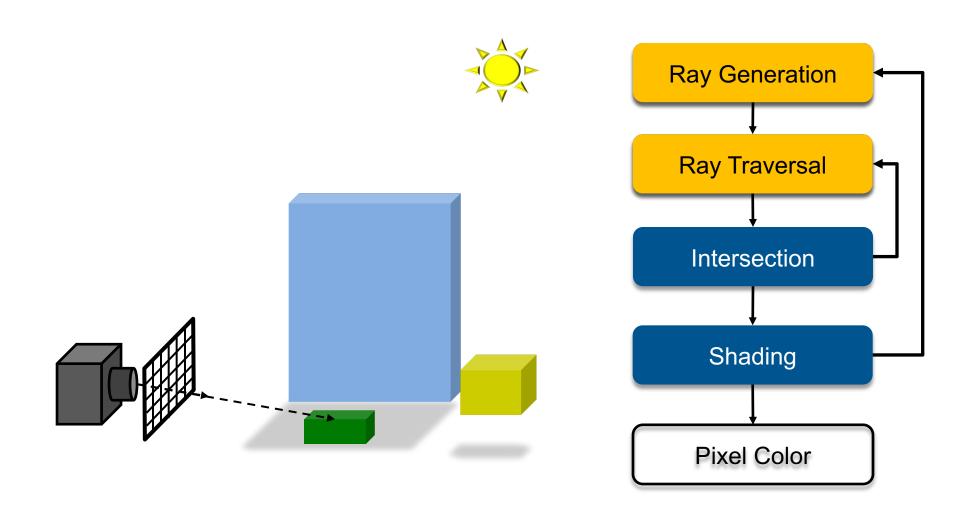
### Ray casting

- Traversal of spatial index structures (acceleration structures)
  - For avoiding costly but unnecessary intersection computations
- Ray-primitive intersection computations → hit point

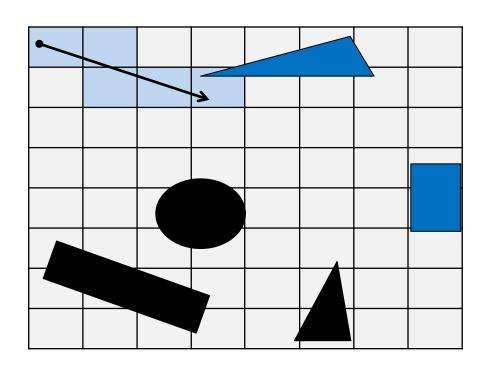
### Shading the hit point

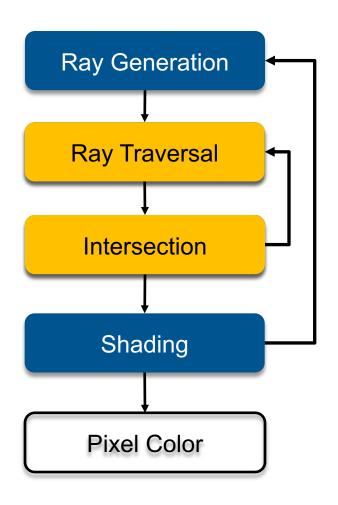
- Compute light towards camera → pixel color
  - Light power (really "radiance") travelling along primary ray
- Needed for computation:
  - Local reflection/scattering properties: material color, texture, ...
  - Local illumination at intersection point
    - Can be hard to determine correctly (light could come from anywhere)
    - Simple: Test direct connection to lights ("shadow rays")
    - Compute transparency/mirror effects through recursive tracing of rays

# Ray Tracing Pipeline (1)

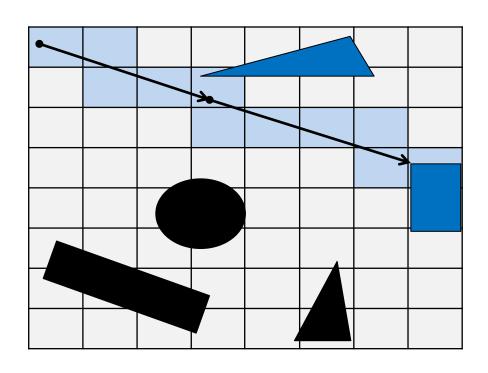


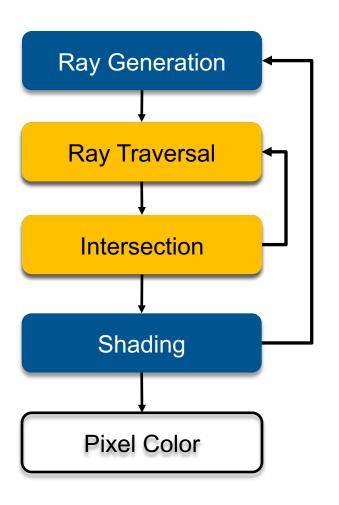
# Ray Tracing Pipeline (2)



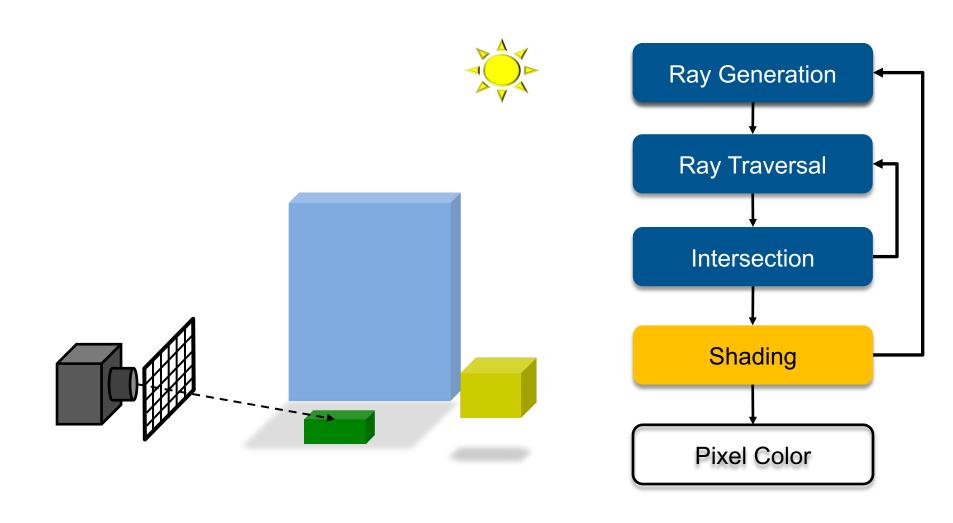


# Ray Tracing Pipeline (3)

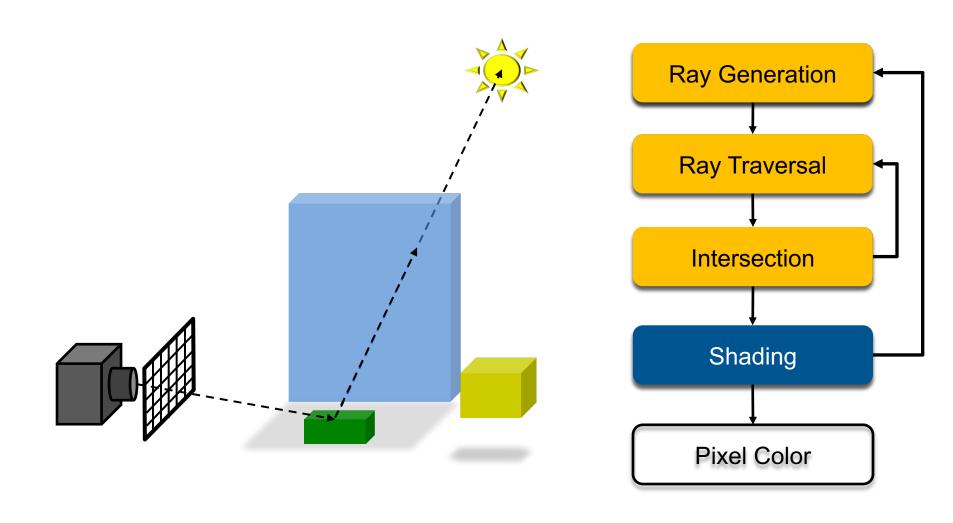




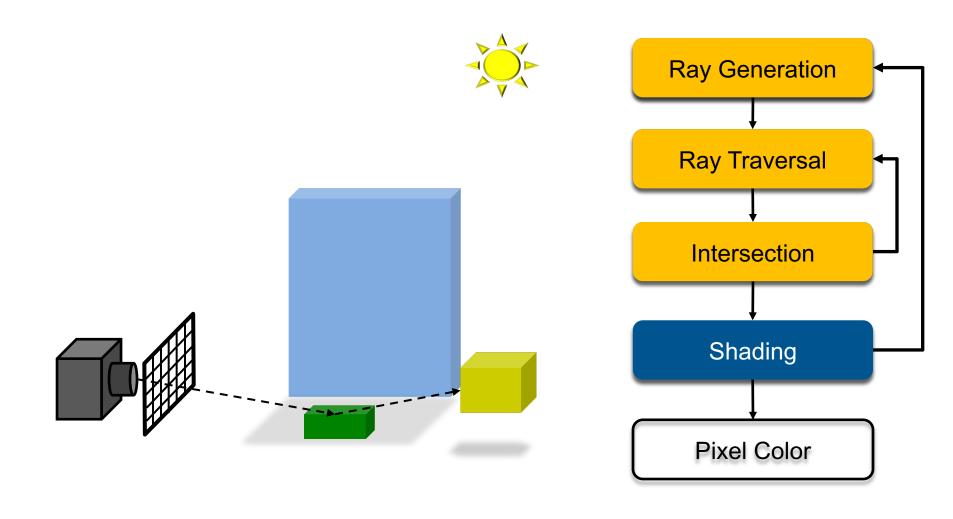
# Ray Tracing Pipeline (4)



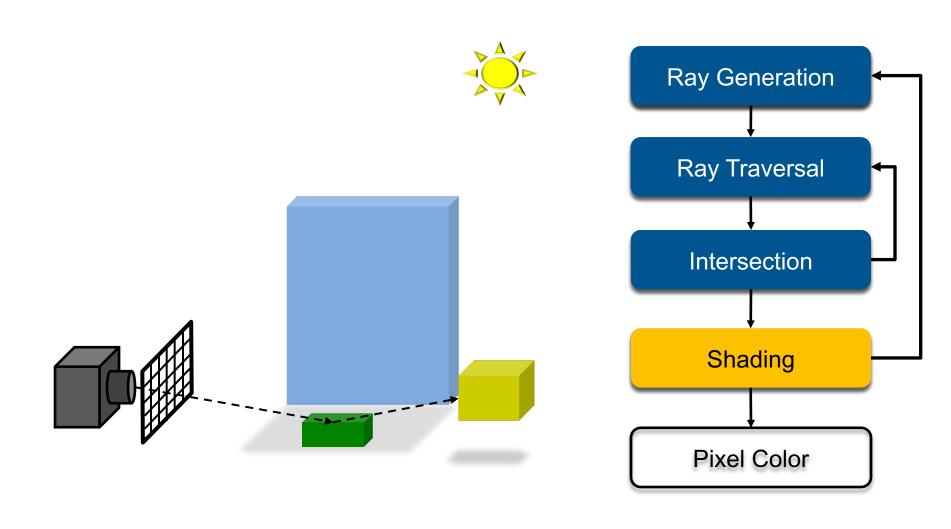
# Ray Tracing Pipeline (5)



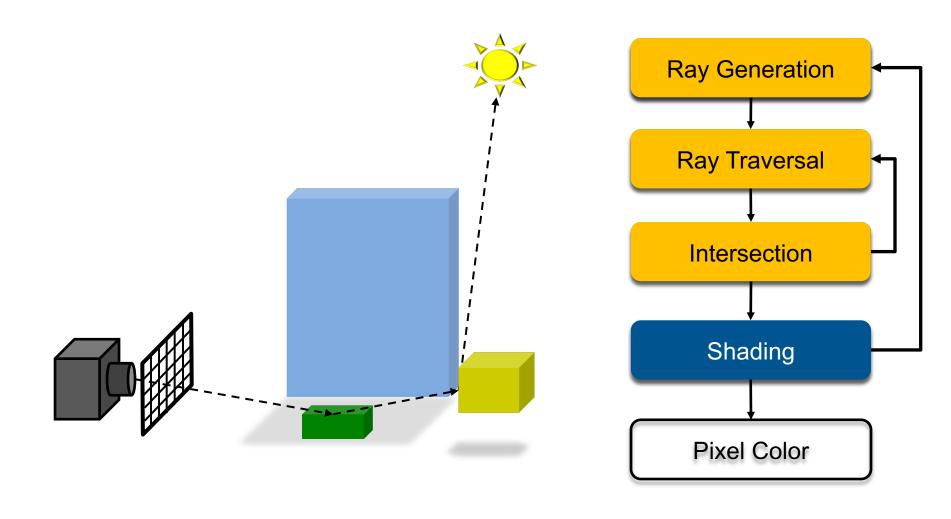
# Recursive Ray Tracing Pipeline (6)



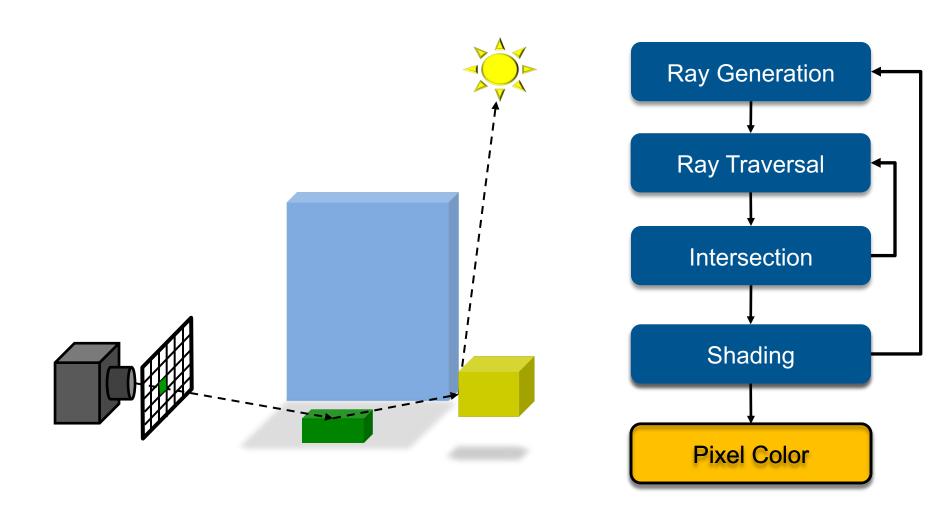
# Recursive Ray Tracing Pipeline (7)



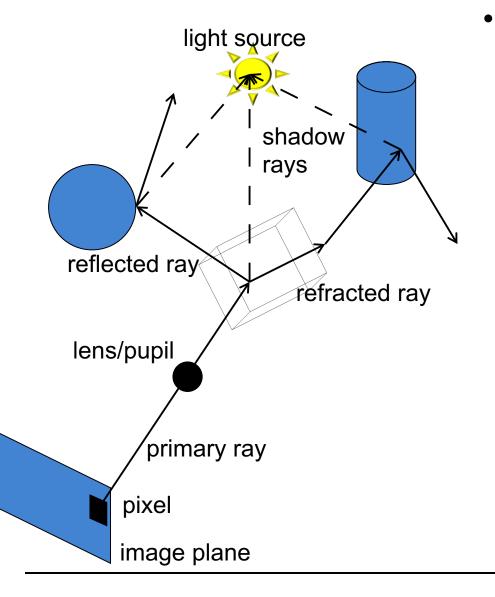
# Recursive Ray Tracing Pipeline (8)



# Recursive Ray Tracing Pipeline (9)

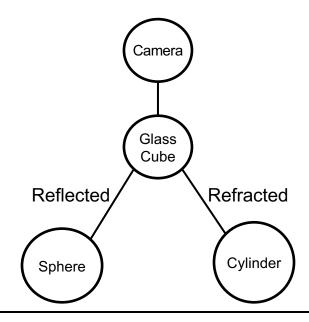


# Recursive Ray Tracing



# Searching recursively for paths to light sources

- Interaction of light & material at intersections
- Trace rays to light sources
- Recursively trace new ray paths in reflection & refraction directions



# Ray Tracing Algorithm

#### Trace(ray)

- Search for the next intersection point (hit, material)
- Return Shade(ray, hit, material) → radiance/color

### Shade(ray, hit, material)

- If object is emissive (i.e. light source)
  - Add radiance emitted towards ray to the reflected radiance
- For each light source
  - if ShadowTrace(ray towards light source, distance to light)
    - Compute radiance emitted from light source towards shadow ray
    - Calculate radiance reflected at hit point towards incoming ray
    - Adding radiance to the reflected radiance
- If mirroring material
  - Recursively calculate radiance from reflected direction:
    - Trace(ReflectRay(ray, hit))
  - · Adding mirrored radiance to the reflected radiance
- Similar for transmissive materials
- Return reflected radiance

### ShadowTrace(ray, dist)

- Return false, if intersection with distance < dist has been found</li>
- Can be changed to handle transparent objects as well
  - But not with refraction WHY?

# Shading (Material)

### Intersection point determines primary ray's "color"

- Diffuse object: isotropic reflection of illumination at hit point
  - No variation with viewing angle: diffuse (or Lambertian)
- Specular: Perfect reflection/refraction (mirror, glass)
  - Only one incoming direction matters → Trace secondary ray path(s)
- More general reflectance models
  - Appearance depends on illumination and viewing direction
  - Local Bi-directional Reflectance Distribution Function (BRDF)

#### Illumination

- Point/directional light sources
- Slight generalization: Area light sources
  - Approximate with multiple samples / shadow rays
- Global illumination (computes also indirect illumination)
  - See Realistic Image Synthesis (RIS) course in next semester

#### More details later

# **Common Approximations**

- Usually RGB color model (red, green, blue)
  - Instead of full spectrum → later
- Light only directly from finite # of light sources
  - Instead of full indirect light from all directions
- Approximate material reflectance properties
  - Diffuse: light reflected uniformly in all directions
  - Specular: perfect reflection, refraction
  - Glossy: mostly reflected around reflection direction
  - Typically, a mix of these three
- Reflection models are often empirical
  - Often using Phong/Blinn shading model (or variation thereof)
  - But physically-based models are available as well
  - → later

# Ray Tracing Features

### Incorporates into a single framework:

- Hidden surface removal
  - Front to back traversal
  - Early termination once first hit point is found
- Shadow computation
  - Shadow rays are traced between a point on a surface & light sources
- Exact simulation of some light paths
  - Reflection (reflected rays at a mirror surface)
  - Refraction (refracted rays at a transparent surface, Snell's law)

#### Limitations

- Potentially many reflections or refractions
  - Exponential increase in number of rays
- Indirect illumination requires many rays to sample all incoming directions
  - Easily gets inefficient for full global illumination computations
- Solved with Path Tracing (→ RIS course)

# Ray Tracing Can...

- Produce Realistic Images
  - By simulating light transport



### What is Possible?

- Models Physics of Global Light Transport
  - Dependable, physically-correct visualization





## **VW Visualization Center**



## Realistic Visualization: CAD



## Realistic Visualization: VR/AR





# Global Lighting Simulation

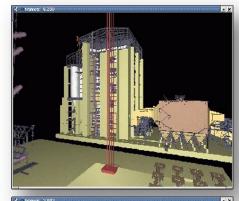


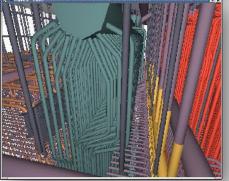


### What is Possible?

### Huge Models

- Logarithmic scaling in scene size





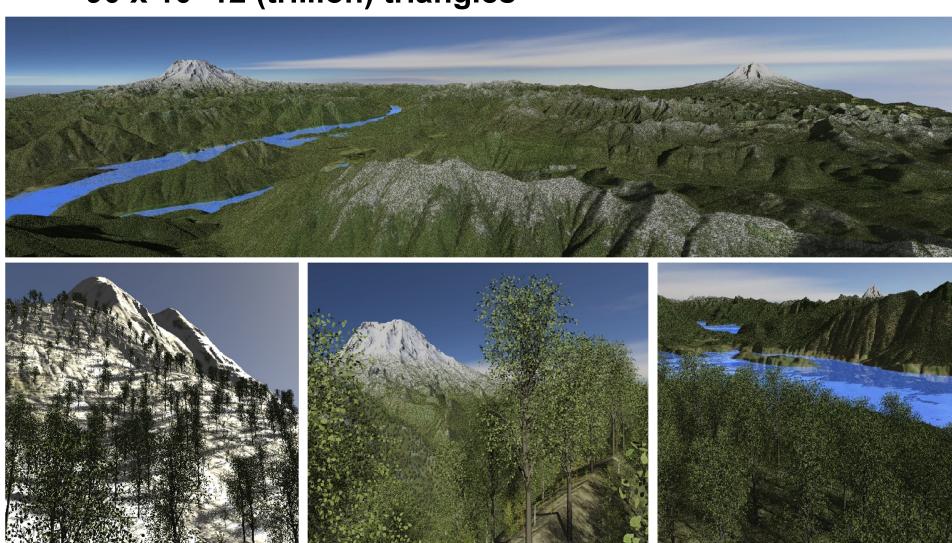


12.5 Million Triangles

~1 Billion Triangles

## **Outdoor Environments**

90 x 10<sup>1</sup>2 (trillion) triangles

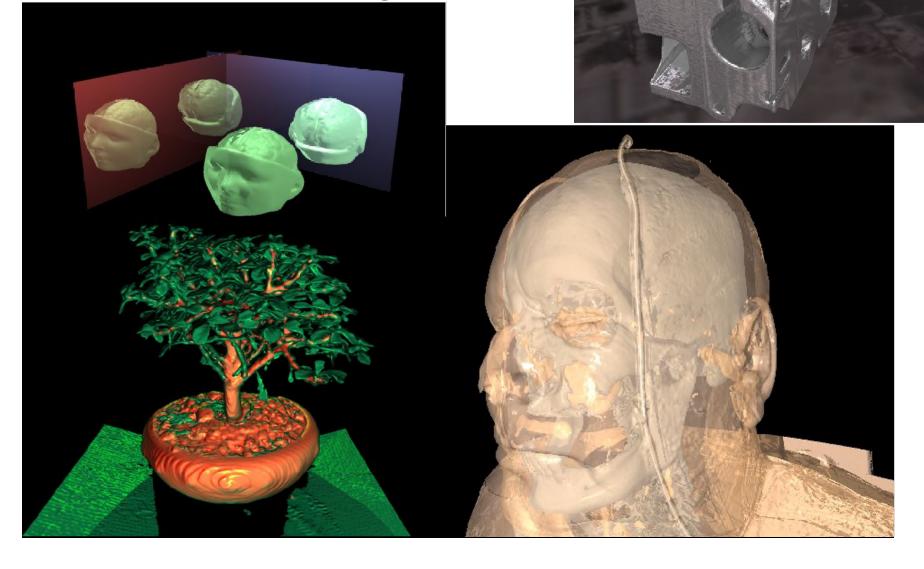




Boeing 777: ~350 million individual polygons, ~30 GB on disk

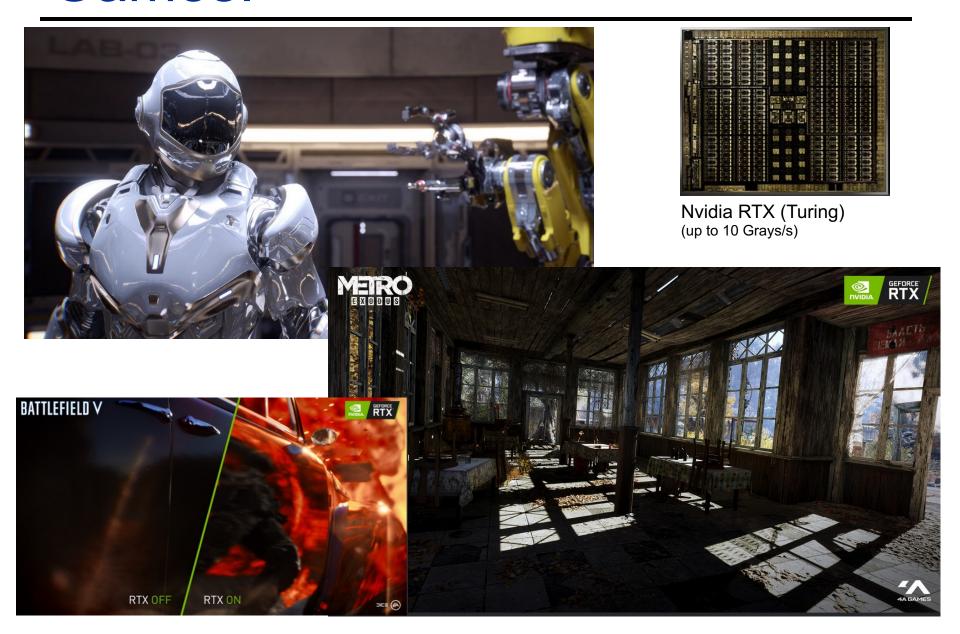
## Volume Visualization

Iso-surface rendering





## Games!



# Ray Tracing in CG

#### In the Past (until end of 80ies)

- Was computationally very demanding (minutes to hours even for simple image)
- Tried hard to speed it up, but always too slow → only off-line use

#### "Lost generation" (1990ies)

- Believed ray tracing would not be suitable for HW implementations
- Believed ray tracing would always be slower than rasterization

#### More Recently

- Interactive ray tracing on supercomputers [Parker, U. Utah'98]
- Interactive ray tracing on PCs [Wald'01]
- RPU: First full HW implementation [Siggraph 2005]
- Commercial tools: Embree (Intel/CPU), OptiX (Nvidia/GPU)
- Complete film industry has switched to ray tracing (Monte-Carlo)
- All GPU now have ray tracing hardware acceleration (as of 2022)

#### Own conference

Symposium on Interactive RT, now High-Performance Graphics (HPG)

#### Ray tracing systems

- Research: PBRT (offline), Mitsuba-3 renderer (EPFL), Rodent (SB), ...
- Products: Blender (OSS), V-Ray (Chaos Group), Arnold & VRED (Autodesk), Corona (Render Legion), ...
- Ray tracing fully integrated into many game engines (Unity, Unreal, ...)

# Ray Casting Outside CG

### Tracing/Casting a ray

- Special type of query
  - "Is there a primitive along a ray"
  - "How far is the closest primitive"

### Other uses than rendering

- Visibility computation
- Volume computation
- Collision detection
- Acoustics
- Radar
- **—** ...

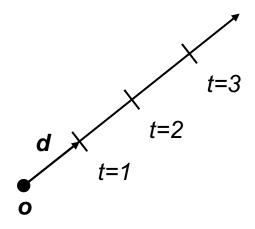
# RAY-PRIMITIVE INTERSECTIONS

# Basic Math - Ray

### Ray parameterization

$$-r(t)=\vec{o}+t\vec{d}$$
,  $t\in\mathbb{R};\ \vec{o},\vec{d}\in\mathbb{R}^3$ : origin and direction

- Ray
  - All points on the graph of r(t), with  $t \in \mathbb{R}_{0+}$



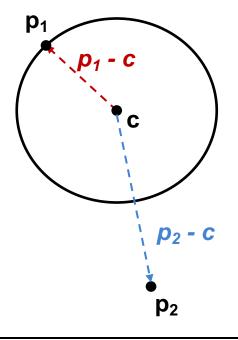
# Simple Pinhole Camera Model

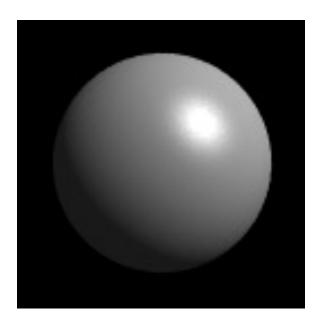
```
// For given image resolution {resx, resy}
// Loop over pixel raster coordinates [0, res-1]
for (prcx = 0; prcx < resx; prcx++)</pre>
  for(prcy = 0; prcy < resy; prcy++)</pre>
    // Normalized device coordinates [0, 1]
                                                        Image plane
    ndcx = (prcx + 0.5) / resx;
    ndcy = (prcy + 0.5) / resy;
    // Screen space coordinates [-1, 1]
    sscx = ndcx * 2 - 1;
    sscv = ndcv * 2 - 1;
    // Generate direction through pixel center
    d = f + sscx \cdot x + sscy \cdot y;
    d = d / |d|; // May normalize here
                                                                      y spanning
    // Trace ray and assign color to pixel
                                                                       vectors
    color = trace ray(o, d);
    write pixel(prcx, prcy, color);
                                              d
                        up-vector
                                           focal vector
                               origin, POV
```

# Basic Math - Sphere

### Sphere S

- $-\vec{c} \in \mathbb{R}^3$ ,  $r \in \mathbb{R}$ : center and radius
- $\ \forall \vec{p} \in \mathbb{R}^3 : \vec{p} \in S \Leftrightarrow (\vec{p} \vec{c})^2 r^2 = 0$ 
  - The distance between points on the sphere and its center equals the radius





# Ray-Sphere Intersection

#### Given

- Ray:  $r(t) = \vec{o} + t\vec{d}$ ,  $t \in \mathbb{R}; \vec{o}, \vec{d} \in \mathbb{R}^3$
- Sphere:  $\vec{c}$  ∈  $\mathbb{R}^3$ , r ∈  $\mathbb{R}$ :
  - $\forall \vec{p} \in \mathbb{R}^3$ :  $\vec{p} \in S \Leftrightarrow (\vec{p} \vec{c}) \cdot (\vec{p} \vec{c}) r^2 = 0$

### Find closest intersection point

- Algebraic approach: substitute ray equation
  - $(\vec{p} \vec{c}) \cdot (\vec{p} \vec{c}) r^2 = 0$  with  $\vec{p} = \vec{o} + t\vec{d}$
  - $t^2 \vec{d} \cdot \vec{d} + 2t \vec{d} \cdot (\vec{o} \vec{c}) + (\vec{o} \vec{c}) \cdot (\vec{o} \vec{c}) r^2 = 0$
  - Solve for t

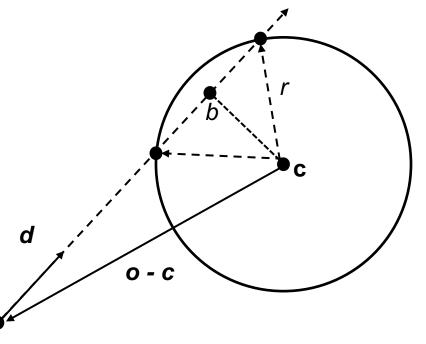
# Ray-Sphere Intersection (2)

### Given

- Ray:  $r(t) = \vec{o} + t\vec{d}$ ,  $t \in \mathbb{R}$ ;  $\vec{o}, \vec{d} \in \mathbb{R}^3$
- Sphere:  $\vec{c}$  ∈  $\mathbb{R}^3$ , r ∈  $\mathbb{R}$ :
  - $\forall \vec{p} \in \mathbb{R}^3$ :  $\vec{p} \in S \Leftrightarrow (\vec{p} \vec{c}) \cdot (\vec{p} \vec{c}) r^2 = 0$

### Find closest intersection point

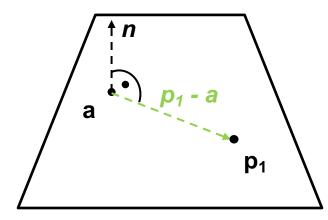
- Geometric approach
  - · Ray and center span a plane
  - Solve in 2D
  - Compute  $|\vec{b} \vec{o}|$ ,  $|\vec{b} \vec{c}|$ 
    - Such that  $∠obc = 90^{\circ}$
  - Intersection(s) if  $|\vec{b} \vec{c}| \le r$
- Be aware of floating point issues if o is far from sphere

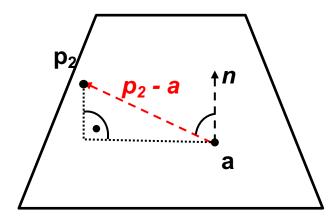


### Basic Math - Plane

### Plane P

- $-\vec{n}, \vec{a} \in \mathbb{R}^3$ : normal and point a in P (Hesse normal form for plane)
- $\forall \vec{p} \in \mathbb{R}^3: \vec{p} \in P \Leftrightarrow (\vec{p} \vec{a}) \cdot \vec{n} = 0$ 
  - The difference vector between any two points on the plane is either 0 or orthogonal to the plane's normal





# Ray-Plane Intersection

#### Given

- Ray:  $r(t) = \vec{o} + t\vec{d}$ ,  $t \in \mathbb{R}; \vec{o}, \vec{d} \in \mathbb{R}^3$
- Plane:  $\vec{n}, \vec{a} \in \mathbb{R}^3$ : normal and point in P

### Compute intersection point

- Plane equation:  $\vec{p} \in P \Leftrightarrow (\vec{p} \vec{a}) \cdot \vec{n} = 0$  $\Leftrightarrow \vec{p} \cdot \vec{n} - D = 0$ , with  $D = \vec{a} \cdot \vec{n}$
- Substitute ray parameterization:  $(\vec{o} + t\vec{d}) \cdot \vec{n} D = 0$
- Solve for t
  - How many intersections could there be?

# Ray-Plane Intersection

#### Given

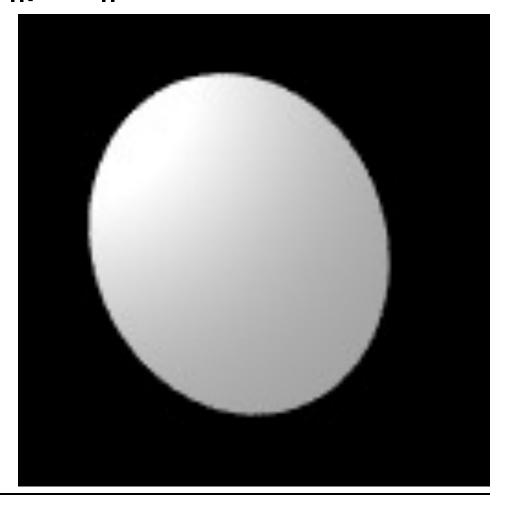
- Ray:  $r(t) = \vec{o} + t\vec{d}$ ,  $t \in \mathbb{R}; \vec{o}, \vec{d} \in \mathbb{R}^3$
- Plane:  $\vec{n}, \vec{a} \in \mathbb{R}^3$ : normal and point in P

### Compute intersection point

- Plane equation:  $\vec{p} \in P \Leftrightarrow (\vec{p} \vec{a}) \cdot \vec{n} = 0$  $\Leftrightarrow \vec{p} \cdot \vec{n} - D = 0$ , with  $D = \vec{a} \cdot \vec{n}$
- Substitute ray parameterization:  $(\vec{o} + t\vec{d}) \cdot \vec{n} D = 0$
- Solve for t
  - 1: General case
  - 0: Ray is parallel to but offset from plane
  - ∞: Ray lies within plane

# Ray-Disc Intersection

- Intersect ray with plane
- Discard intersection if ||p a|| > r



# Basic Math - Triangle

### Triangle T

- $-\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ : vertices
- Affine combinations of  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$   $\rightarrow$  points in the plane
  - Non-negative coefficients that sum up to 1 → points in the triangle

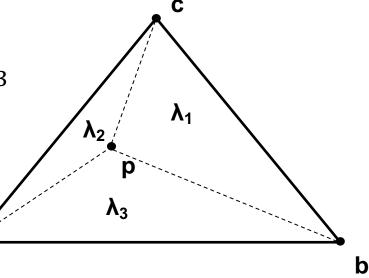
a

$$- \forall \vec{p} \in \mathbb{R}^3 : \vec{p} \in T \Leftrightarrow \exists \lambda_{1,2,3} \in \mathbb{R}_{0+}, \ \lambda_1 + \lambda_2 + \lambda_3 = 1 \ and \\ \vec{p} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 \vec{c}$$

• Barycentric coordinates  $\lambda_{1,2,3}$ 

 $-\lambda_1 = A_{pbc}/A_{abc}$ , etc.

 A: signed area of triangle, based on CLW/CCW orientation

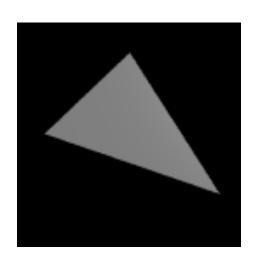


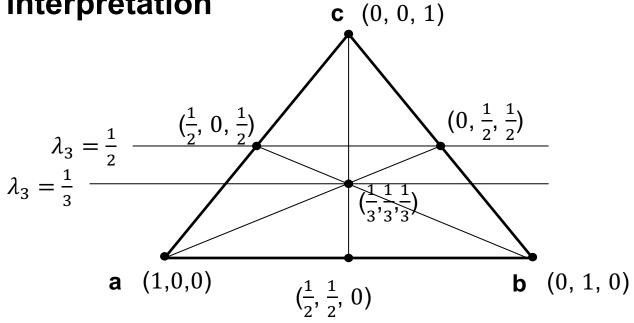
# Barycentric Coordinates (BCs)

### Triangle T

- $-\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ : vertices
- $\lambda_{1,2,3}$ : Barycentric coordinates
- $\lambda_1 + \lambda_2 + \lambda_3 = 1$
- $-\lambda_1 = A_{pbc}/A_{abc}$ , etc.

Easy geometric interpretation





### Triangle Intersection: Plane-Based

### Compute intersection with triangle's plane

Plane equation easily computable from vertices via cross product

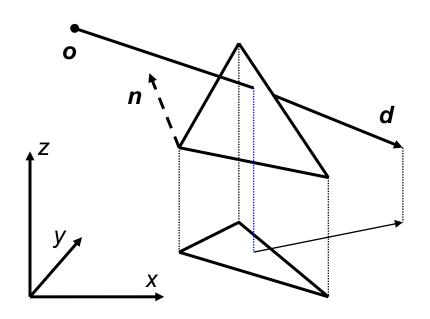
### Compute barycentric coordinates

- Signed areas of subtriangles
- Can be done in 2D, after "projection" onto major plane, depending on largest component of normal vector
  - Maximizes area and numerical stability

### Test for positive BCs

#### Issues:

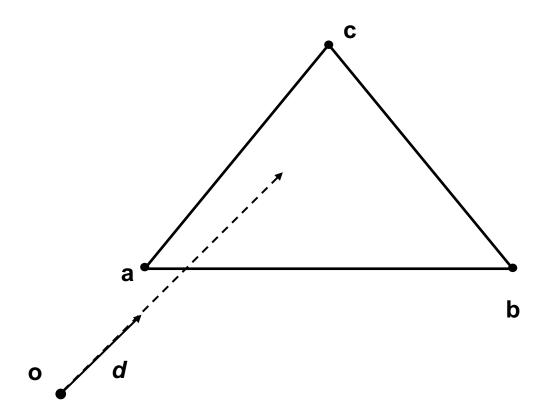
- Edges of neighboring triangles might not be identical
- Due to inaccuracies of floats
- Need a better method!



3D linear function across triangle (3D edge functions)

- Ray:  $\vec{o} + t\vec{d}$ ,  $t \in \mathbb{R}$ ;  $\vec{o}$ ,  $\vec{d} \in \mathbb{R}^3$ 

- Triangle:  $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ 



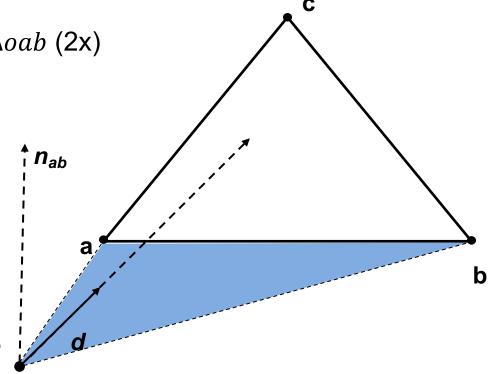
3D linear function across triangle (3D edge functions)

- Ray: 
$$\vec{o} + t\vec{d}$$
,  $t \in \mathbb{R}$ ;  $\vec{o}$ ,  $\vec{d} \in \mathbb{R}^3$ 

- Triangle:  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c} \in \mathbb{R}^3$ 

$$- \overrightarrow{n_{ab}} = (\overrightarrow{b} - \overrightarrow{o}) \times (\overrightarrow{a} - \overrightarrow{o})$$

 $- |\overrightarrow{n_{ab}}|$  is the signed area of  $\Delta oab$  (2x)



3D linear function across triangle (3D edge functions)

- Ray: 
$$\vec{o} + t\vec{d}$$
,  $t \in \mathbb{R}$ ;  $\vec{o}$ ,  $\vec{d} \in \mathbb{R}^3$ 

- Triangle:  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c} \in \mathbb{R}^3$ 

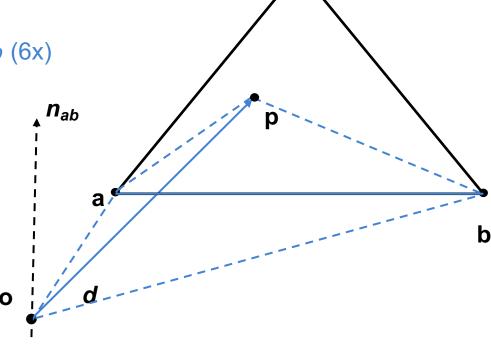
$$- \overrightarrow{n_{ab}} = (\overrightarrow{b} - \overrightarrow{o}) \times (\overrightarrow{a} - \overrightarrow{o})$$

 $- |\overrightarrow{n_{ab}}|$  is the signed area of  $\triangle oab$  (2x)

$$-\lambda_3^*(t) = \overrightarrow{n_{ab}} \cdot t \vec{d}$$

Volume of tetrahedra obap (6x)

• For  $t = t_{hit}$ 



### 3D linear function across triangle (3D edge functions)

- Ray: 
$$\vec{o} + t\vec{d}$$
,  $t \in \mathbb{R}$ ;  $\vec{o}$ ,  $\vec{d} \in \mathbb{R}^3$ 

- Triangle:  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c} \in \mathbb{R}^3$ 

$$- \overrightarrow{n_{ab}} = (\overrightarrow{b} - \overrightarrow{o}) \times (\overrightarrow{a} - \overrightarrow{o})$$

 $- |\overrightarrow{n_{ab}}|$  is the signed area of  $\triangle oab$  (2x)

$$-\lambda_3^*(t) = \overrightarrow{n_{ab}} \cdot t \vec{d}$$

Volume of tetrahedra obap (6x)

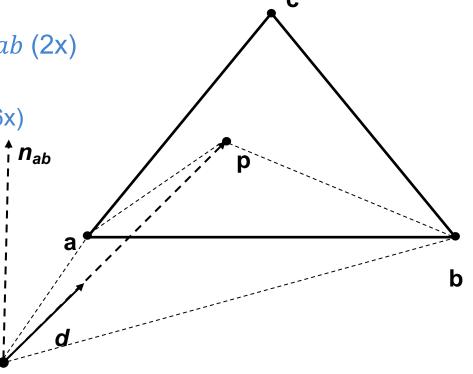
• For 
$$t = t_{hit}$$

$$-\lambda_{1,2}^*(t) = \overrightarrow{n_{bc,ac}} \cdot t\vec{d}$$

Normalize

• 
$$\lambda_i = \frac{\lambda_i^*(t)}{\lambda_1^*(t) + \lambda_2^*(t) + \lambda_3^*(t)}$$
,  $i = 1, 2, 3$ 

• Length of  $t\vec{d}$  cancels out



### 3D linear function across triangle (3D edge functions)

- Ray: 
$$\vec{o} + t\vec{d}$$
,

$$t \in \mathbb{R}; \vec{o}, \vec{d} \in \mathbb{R}^3$$

- Triangle:  $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ 

$$-\overrightarrow{n_{ab}} = (\overrightarrow{b} - \overrightarrow{o}) \times (\overrightarrow{a} - \overrightarrow{o})$$

 $- |\overrightarrow{n_{ab}}|$  is the signed area of  $\triangle oab$  (2x)

$$-\lambda_3^*(t) = \overrightarrow{n_{ab}} \cdot t \vec{d}$$

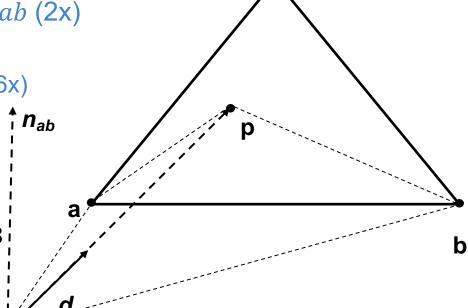
Volume of tetrahedra obap (6x)

• For 
$$t = t_{hit}$$

$$-\lambda_{1,2}^*(t) = \overrightarrow{n_{bc,ac}} \cdot t\vec{d}$$

Normalize

• 
$$\lambda_i = \frac{\lambda_i^*(t)}{\lambda_1^*(t) + \lambda_2^*(t) + \lambda_3^*(t)}$$
,  $i = 1, 2, 3$ 



Hit, if all BCs positive:

- Compute 
$$\vec{p} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 \vec{c}$$

### Quadrics

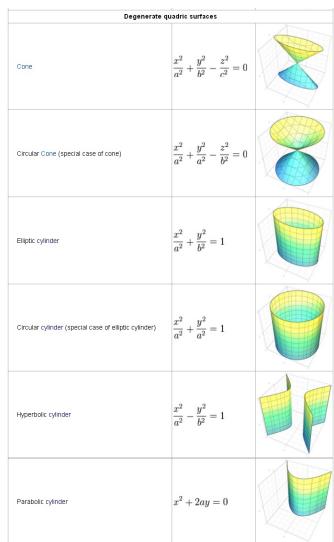
- Implicit
  - f(x, y, z) = v
- Ray equation

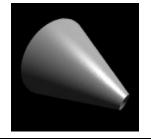
$$- x = x_o + t x_d$$

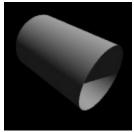
$$- y = y_o + t y_d$$

- $-z = z_o + t z_d$
- Solve for t

| Non-degenerate real quadric surfaces                     |                                                            |
|----------------------------------------------------------|------------------------------------------------------------|
| Ellipsoid                                                | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  |
| Spheroid (special case of ellipsoid)                     | $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$  |
| Sphere (special case of spheroid)                        | $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{a^2} = 1$  |
| Elliptic paraboloid                                      | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$                |
| Circular paraboloid(special case of elliptic paraboloid) | $\frac{x^2}{a^2} + \frac{y^2}{a^2} - z = 0$                |
| Hyperbolic paraboloid                                    | $\frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0$                |
| Hyperboloid of one sheet                                 | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$  |
| Hyperboloid of two sheets                                | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ |
|                                                          |                                                            |





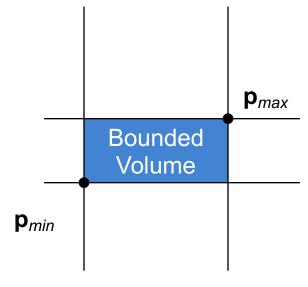


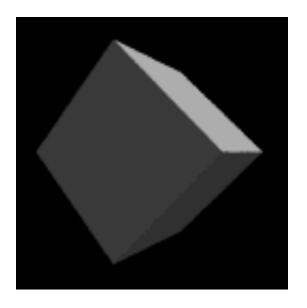
# Axis Aligned Bounding Box

### Given

- Ray:  $\vec{o} + t\vec{d}$ ,  $t \in \mathbb{R}$ ;  $\vec{o}$ ,  $\vec{d} \in \mathbb{R}^3$ 

− Axis aligned bounding box (AABB):  $\overrightarrow{p_{min}}$ ,  $\overrightarrow{p_{max}} \in \mathbb{R}^3$ 





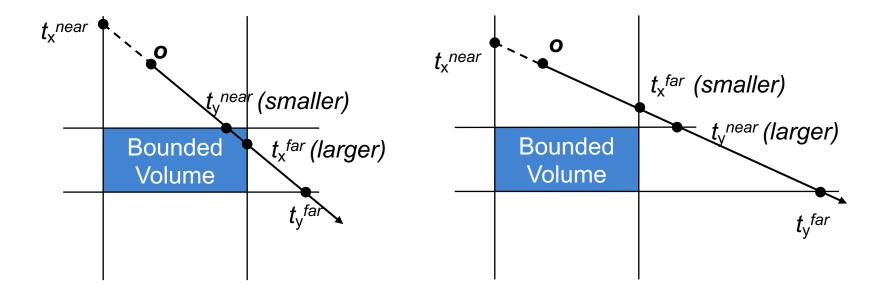
# Ray-Box Intersection

### Given

- Ray:  $\vec{o} + t\vec{d}$ ,  $t \in \mathbb{R}$ ;  $\vec{o}$ ,  $\vec{d} \in \mathbb{R}^3$
- Axis aligned bounding box (AABB):  $\overrightarrow{p_{min}}$ ,  $\overrightarrow{p_{max}}$  ∈  $\mathbb{R}^3$

### "Slabs test" for ray-box intersection

- Ray enters the box in all dimensions before exiting in any
- $\max(\{t_i^{near} | i = x, y, z\}) < \min(\{t_i^{far} | i = x, y, z\})$



### History of Intersection Algorithms

### Ray-geometry intersection algorithms

Polygons: [Appel '68]

– Quadrics, CSG: [Goldstein & Nagel '71]

Recursive Ray Tracing: [Whitted '79]

– Tori: [Roth '82]

Bicubic patches: [Whitted '80, Kajiya '82]

Algebraic surfaces: [Hanrahan '82]

Swept surfaces: [Kajiya '83, van Wijk '84]

Fractals: [Kajiya '83]

Deformations: [Barr '86]

NURBS: [Stürzlinger '98]

Subdivision surfaces: [Kobbelt et al '98]

### **Precision Problems**

• E.g., cause of "surface acne"

