# Computer Graphics 

## - Transformations -

Philipp Slusallek

## Vector Space

- Math recap
- 3D vector space over the real numbers
- $\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \in \boldsymbol{V}^{\mathbf{3}}=\mathbb{R}^{\mathbf{3}}$
- Vectors written as $n \times 1$ matrices
- Vectors describe directions - not positions!
- All vectors conceptually start from the origin of the coordinate system
- 3 linear independent vectors create a basis
- Standard basis

$$
\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$



- Any 3D vector can be represented uniquely with coordinates $v_{i}$ with respect to a basis
- $\boldsymbol{v}=v_{1} \boldsymbol{e}_{1}+v_{2} \boldsymbol{e}_{2}+v_{3} \boldsymbol{e}_{3} \quad v_{1}, v_{2}, v_{3} \in \mathbb{R}$


## Vector Space - Metric

- Standard scalar product, a.k.a. dot or inner product
$-u \cdot v=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
- Used to measure lengths
- $|v|^{2}=v \cdot v=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}$
- Used to compute angles
- $u \cdot v=|u||v| \cos (u, v)$
- Projection of vectors onto other vectors
- $|u| \cos (\theta)=\frac{u \cdot v}{|v|}=\frac{u \cdot v}{\sqrt{v \cdot v}}$



## Vector Space - Basis

- Orthonormal basis
- Unit length vectors
- $\left|e_{1}\right|=\left|e_{2}\right|=\left|e_{3}\right|=1$
- Orthogonal to each other
- $e_{i} \cdot e_{j}=\delta_{i j}$
- Handedness of a coordinate system
- Two options: $e_{1} \times e_{2}= \pm e_{3}$
- Positive: Right-handed (RHS)
- Negative: Left-handed (LHS)
- Example: Screen Space
- Typical: X goes right, Y goes up (thumb \& index finger, respectively)
- In a RHS: Z goes out of the screen (middle finger)
- Be careful:
- Most systems nowadays use a right-handed coordinate system
- But some are not (e.g., RenderMan) $\rightarrow$ can cause lots of confusion


## Affine Space

- Basic mathematical concept
- Denoted as $A^{3}$
- Elements are positions (not directions!)
- Defined via its associated vector space $V^{3}$
- $a, b \in A^{3} \Leftrightarrow \exists!v \in V^{3}: v=b-a$
- $\rightarrow$ : unique, $\leftarrow$ : ambiguous

- Operations on $\mathrm{A}^{3}$
- Subtraction of two elements yields a vector
- No addition of affine elements
- Its not clear what sum of two points would even mean
- But: Addition of points and vectors:
$-a+v=b \in A^{3}$
- Distance
$-\operatorname{dist}(a, b)=|a-b|$


## Affine Space - Basis

- Affine Basis
- Given by its origin o (a point) and the basis of an associated vector space
- $\left\{\boldsymbol{e}_{1}, e_{2}, e_{3}, o\right\}: \quad e_{1}, e_{2}, e_{3} \in V^{3} ; \boldsymbol{o} \in A^{3}$
- Position vector of point $\mathbf{p}$
$-(p-o)$ is in $V^{3}$



## Affine Coordinates

- Affine Combination
- Linear combination of $(\mathrm{n}+1)$ points
- $p_{0}, \ldots, p_{n} \in A^{n}$
- With weights forming a partition of unity
- $\alpha_{0}, \ldots, \alpha_{n} \in \mathbb{R}$ with $\sum_{i} \alpha_{i}=1$
$-p=\sum_{i=0}^{n} \alpha_{i} p_{i}=p_{0}+\sum_{i=1}^{n} \alpha_{i}\left(p_{i}-p_{0}\right)=o+\sum_{i=1}^{n} \alpha_{i} v_{i}$
- Basis
- ( $n+1$ ) points form am affine basis of $A^{n}$
- Iff none of these point can be expressed as an affine combination of the other points
- Any point in $A^{n}$ can then be uniquely represented as an affine combination of the affine basis $p_{0}, \ldots, p_{n} \in A^{n}$
- Any point in another basis can also be expressed as a linear combination of the $p_{i}$, yielding a matrix for the basis transform


## Affine Coordinates

- Closely related to "Barycentric Coordinates"
- Center of mass of ( $n+1$ ) points with arbitrary masses (weights) $m_{i}$ is given as
- $p=\frac{\sum m_{i} p_{i}}{\sum m_{i}}=\sum \frac{m_{i}}{\sum m_{i}} p_{i}=\sum \alpha_{i} p_{i}$
- Convex / Affine Hull
- If all $\alpha_{i}$ are non-negative than p is in the convex hull of the other points
- In 1D
- Point is defined by the splitting ratio $\alpha_{1}: \alpha_{2}$
- $p=\alpha_{1} p_{1}+\alpha_{2} p_{2}=\frac{\left|p-p_{2}\right|}{\left|p_{2}-p_{1}\right|} p_{1}+\frac{\left|p-p_{1}\right|}{\left|p_{2}-p_{1}\right|} p_{2}$
- In 2D
- Weights are the relative areas in $\Delta\left(A_{1}, A_{2}, A_{3}\right)$
- $t_{i}=\alpha_{i}=\frac{\Delta\left(P, A_{\left.(i+1) \%_{3}, A_{(i+2)} \%_{3}\right)}\right.}{\Delta\left(A_{1}, A_{2}, A_{3}\right)}$
- $p=\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3}$

Note: Length and area measures are signed here


## Affine Mappings

- Properties
- Affine mapping/transformations (continuous, bijective, invertible)
- $\mathrm{T}: \mathrm{A}^{3} \rightarrow \mathrm{~A}^{3}$
- Defined by two non-degenerated simplicies (that define a basis)
- 2D: Triangle, 3D: Tetrahedron, ...
- Invariants under affine transformations:
- Barycentric/affine coordinates
- Straight lines, parallelism, splitting ratios, surface/volume ratios
- Characterization via fixed points and lines
- Given as eigenvalues and eigenvectors of the mapping
- Representation
- Matrix product and a translation vector:
- $\boldsymbol{T} p=\boldsymbol{A} p+\boldsymbol{t}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathrm{t} \in \mathbb{R}^{n}$
- Invariance of affine coordinates
- $\boldsymbol{T} p=\boldsymbol{T}\left(\sum \alpha_{i} p_{i}\right)=\boldsymbol{A}\left(\sum \alpha_{i} p_{i}\right)+\boldsymbol{t}=\sum \alpha_{i}\left(\boldsymbol{A} p_{i}\right)+\sum \alpha_{i} \boldsymbol{t}=\sum \alpha_{i}\left(\boldsymbol{T} p_{i}\right)$


## Homogeneous Coordinates for 3D

- Homogeneous embedding of $R^{3}$ into the projective 4D space $P\left(R^{4}\right)$
- Mapping into homogeneous space
- $\mathbb{R}^{3} \ni\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \rightarrow\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right) \in P\left(\mathbb{R}^{4}\right)$
- Mapping back by dividing through fourth component
$\cdot\left(\begin{array}{c}X \\ Y \\ Z \\ W\end{array}\right) \rightarrow\left(\begin{array}{c}X / W \\ Y / W \\ Z / W\end{array}\right)$
- Consequence
- This allows to represent affine transformations as $4 \times 4$ matrices
- Mathematical trick
- Convenient representation to express rotations and translations as matrix multiplications
- Easy to find line through points, point-line/line-line intersections
- Also allows to define projections (later)


## Point Representation in 2D or P(3D)

- Point in homogeneous coordinates
- All points along a line through the origin map to the same point in 2D


$$
x=\frac{X}{W} \quad y=\frac{Y}{W}
$$

## Homogeneous Coordinates in 2D

- Some tricks (work only in $P\left(R^{3}\right)$, i.e. only in 2D)
- Point representation
- $(X)=\left(\begin{array}{c}X \\ Y \\ W\end{array}\right) \in P\left(\mathbb{R}^{3}\right),\binom{x}{y}=\binom{X / W}{Y / W}$
- Representation of a line $l \in \mathbb{R}^{2}$
- Dot product of $l$ vector with point in plane must be zero:

$$
-l=\left\{\left.\binom{x}{y} \right\rvert\, a x+b y+c \cdot 1=0\right\}=\left\{X \in P\left(\mathbb{R}^{3}\right) \mid X \cdot l=0, \mathrm{l}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right\}
$$

- Line I is normal vector of the plane through origin and points on line
- Line trough 2 points $p$ and p'
- Line must be orthogonal to both points
- $p \in l \wedge p^{\prime} \in l \Leftrightarrow l=p \times p^{\prime}$
- Intersection of lines I and $I^{\prime}$ :
- Point on both lines $\rightarrow$ point must be orthogonal to both line vectors
- $X \in l \cap l^{\prime} \Leftrightarrow X=l \times l^{\prime}$


## Line Representation

- Definition of a 2D Line in $\mathbf{P}\left(\mathrm{R}^{3}\right)$
- Set of all point P where the dot product with I is zero


$$
p \cdot l=0
$$

## Line Representation

- Line
- Represented by normal vector to plane through line and origin


$$
a x+b y+c \cdot 1=0
$$

## Line through 2 Points

- Construct line through two points
- Line vector must be orthogonal to both points
- Compute through cross product of point coordinates


$$
l=p \times p^{\prime}
$$

## Intersection of Lines

- Construct intersection of two lines
- A point that is on both lines and thus orthogonal to both lines
- Computed by cross product of both line vectors


$$
p=l \times l^{\prime}
$$

## Orthonormal Matrices

- Columns are orthogonal vectors of unit length
- An example
- $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
- Directly derived from the definition of the matrix product:
- $M^{T} M=1$
- In this case the transpose must be identical to the inverse:
- $M^{-1}:=M^{T}$


## Linear Transformation: Matrix

- Transformations in a Vector space: Multiplication by a Matrix
- Action of a linear transformation on a vector
- Multiplication of matrix with column vectors (e.g. in 3D)

$$
p^{\prime}=\left(\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=\boldsymbol{T} p=\left(\begin{array}{lll}
T_{x x} & T_{x y} & T_{x z} \\
T_{y x} & T_{y y} & T_{y z} \\
T_{z x} & T_{z y} & T_{z z}
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

- Composition of transformations
- Simple matrix multiplication ( $\boldsymbol{T}_{\mathbf{1}}$, then $\boldsymbol{T}_{2}$ )
- $\boldsymbol{T}_{2} \boldsymbol{T}_{1} p=\boldsymbol{T}_{\mathbf{2}}\left(\boldsymbol{T}_{1} p\right)=\left(\boldsymbol{T}_{2} \boldsymbol{T}_{\mathbf{1}}\right) p=\boldsymbol{T} p$
- Note: matrix multiplication is associative but not commutative!
- $\boldsymbol{T}_{2} \boldsymbol{T}_{1}$ is not the same as $\boldsymbol{T}_{\mathbf{1}} \boldsymbol{T}_{2}$ (in general)


## Affine Transformation

- Remember:
- Affine map: Linear mapping and a translation
- $\boldsymbol{T} p=A p+t$
- For 3D: Combining it into a single matrix
- Using homogeneous 4D coordinates
- Multiplication by $4 \times 4$ matrix in $\mathrm{P}\left(\mathrm{R}^{4}\right)$ space

$$
\text { - } p^{\prime}=\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime} \\
W^{\prime}
\end{array}\right)=T p=\left(\begin{array}{cccc}
T_{x x} & T_{x y} & T_{x z} & T_{x w} \\
T_{y x} & T_{y y} & T_{y z} & T_{y w} \\
T_{z x} & T_{z y} & T_{z z} & T_{z w} \\
T_{w x} & T_{w y} & T_{w z} & T_{w w}
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right)
$$

- Allows for combining (concatenating) multiple transforms into one using normal ( $4 \times 4$ ) matrix products
- Let's go through the different transforms we need:


## Transformations: Translation

- Translation (T)

$$
-\boldsymbol{T}\left(t_{x}, t_{y}, t_{z}\right) p=\left(\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
z+t_{z} \\
1
\end{array}\right)
$$



## Translation of Vectors

- So far: only translated points
- Vectors: Difference between 2 points
$-v=p-q=\left(\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right)-\left(\begin{array}{c}q_{x} \\ q_{y} \\ q_{z} \\ 1\end{array}\right)=\left(\begin{array}{c}p_{x}-q_{x} \\ p_{y}-q_{y} \\ p_{z}-q_{z} \\ 0\end{array}\right)$
- Fourth component is zero
- Consequently: Translations do not affect vectors!
- $\boldsymbol{T}\left(t_{x}, t_{y}, t_{z}\right) v=\left(\begin{array}{cccc}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}v_{x} \\ v_{y} \\ v_{z} \\ 0\end{array}\right)=\left(\begin{array}{c}v_{x} \\ v_{y} \\ v_{z} \\ 0\end{array}\right)$


## Translation: Properties

- Properties
- Identity
- $\boldsymbol{T}(0,0,0)=\mathbf{1}$ (Identity Matrix)
- Commutative (special case)
- $\boldsymbol{T}\left(t_{x}, t_{y}, t_{z}\right) \boldsymbol{T}\left(t_{x}^{\prime}, t_{y}^{\prime}, t_{z}^{\prime}\right)=\boldsymbol{T}\left(t_{x}^{\prime}, t_{y}^{\prime}, t_{z}^{\prime}\right) \boldsymbol{T}\left(t_{x}, t_{y}, t_{z}\right)=$ $\boldsymbol{T}\left(t_{x}+t_{x}^{\prime}, t_{y}+t_{y}^{\prime}, t_{z}+t_{z}^{\prime}\right)$
- Inverse
- $\boldsymbol{T}^{-\mathbf{1}}\left(t_{x}, t_{y}, t_{z}\right)=\boldsymbol{T}\left(-t_{x}^{\prime},-t_{y}^{\prime},-t_{z}^{\prime}\right)$


## Basic Transformations (2)

- Scaling (S)
$-\mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)=\left(\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
- Note: $s_{x}, s_{y}, s_{z} \geq 0$ (otherwise see mirror transformation)
- Uniform Scaling s: $\mathrm{s}=s_{x}=x_{y}=s_{z}$




## Basic Transformations

- Reflection/Mirror Transformation (M)
- Reflection at plane ( $x=0$ )
- $\boldsymbol{M}_{\boldsymbol{x}}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)=\left(\begin{array}{c}-x \\ y \\ z \\ 1\end{array}\right)$

- Analogously for other axis
- Note: changes orientation
- Right-handed rotation becomes left-handed and v.v.
- Indicated by $\operatorname{det}\left(M_{i}\right)<0$
- Reflection at origin
- $\boldsymbol{M}_{\boldsymbol{o}}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)=\left(\begin{array}{c}-x \\ -y \\ -z \\ 1\end{array}\right)$
- Note: changes orientation in 3D
- But not in 2D (!!!): Just two scale factors
- Each scale factor reverses orientation once



## Basic Transformations (4)

- Shear (H)
$-\boldsymbol{H}\left(h_{x y}, h_{x z}, h_{y z}, h_{y x}, h_{z x}, h_{z y}\right)=$

$$
\left(\begin{array}{cccc}
1 & h_{x y} & h_{x z} & 0 \\
h_{y x} & 1 & h_{y z} & 0 \\
h_{z x} & h_{z y} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+h_{x y} y+h_{x z} z \\
y+h_{y x} x+h_{y z} z \\
z+h_{z x} x+h_{z y} y \\
1
\end{array}\right)
$$

- Determinant is 1
- Volume preserving (as volume is just shifted in some direction)




## Rotation in 2D

- In 2D: Rotation around origin
- Representation in spherical coordinates
- $x=r \cos \theta \rightarrow x^{\prime}=r \cos (\theta+\phi)$

$$
y=r \sin \theta \rightarrow y^{\prime}=r \sin (\theta+\phi)
$$



- Well known property
- $\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$

$$
\sin (\theta+\phi)=\cos \theta \sin \phi+\sin \theta \cos \phi
$$

- Gives

- $x^{\prime}=(r \cos \theta) \cos \phi-(r \sin \theta) \sin \phi=x \cos \phi-y \sin \phi$
$y^{\prime}=(r \cos \theta) \sin \phi+(r \sin \theta) \cos \phi=x \sin \phi+y \cos \phi$
- Or in matrix form
- $R_{z}(\phi)=\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$



## Rotation in 3D

- Rotation around major axes
- $\boldsymbol{R}_{\boldsymbol{x}}(\phi)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$-\boldsymbol{R}_{\boldsymbol{y}}(\phi)=\left(\begin{array}{cccc}\cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$-\boldsymbol{R}_{\mathbf{z}}(\phi)=\left(\begin{array}{cccc}\cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
- 2D rotation around the respective axis
- Assumes right-handed system, mathematically positive direction
- Be aware of change in sign on sines in $\boldsymbol{R}_{\boldsymbol{y}}$ (off diagonal elements)
- Due to relative orientation of other axis


## Rotation in 3D (2)

- Properties
$-\boldsymbol{R}_{\boldsymbol{a}}(0)=\mathbf{1}$
$-\boldsymbol{R}_{\boldsymbol{a}}(\theta) \boldsymbol{R}_{\boldsymbol{a}}(\phi)=\boldsymbol{R}_{\boldsymbol{a}}(\theta+\phi)=\boldsymbol{R}_{\boldsymbol{a}}(\phi) \boldsymbol{R}_{\boldsymbol{a}}(\theta)$
- Rotations around the same axis are commutative (special case)
- In general: Not commutative
- $\boldsymbol{R}_{\boldsymbol{a}}(\theta) \boldsymbol{R}_{\boldsymbol{b}}(\phi) \neq \boldsymbol{R}_{\boldsymbol{b}}(\phi) \boldsymbol{R}_{\boldsymbol{a}}(\theta)$
- Order does matter for rotations around different axes
$-\boldsymbol{R}_{\boldsymbol{a}}^{-\mathbf{1}}(\theta)=\boldsymbol{R}_{\boldsymbol{a}}(-\theta)=\boldsymbol{R}_{\boldsymbol{a}}^{\boldsymbol{T}}(\theta)$
- Orthonormal matrix: Inverse is equal to the transpose
- Determinant is 1
- Volume preserving


## Rotation Around Point

- Rotate object around a point $p$ and axis a
- Translate $p$ to origin, rotate around axis a, translate back to $p$
- $\boldsymbol{R}_{\boldsymbol{a}}(p, \theta)=\boldsymbol{T}(p) \boldsymbol{R}_{\boldsymbol{a}}(\theta) \boldsymbol{T}(-p)$






## Rotation Around Some Axis

- Rotate around a given point $p$ and vector $r(|r|=1)$
- Translate so that $p$ is in the origin
- Transform with rotation $R=M^{\top}$
- M given by orthonormal basis ( $r, s, t$ ) such that $r$ becomes the $\mathbf{x}$ axis
- Requires construction of a orthonormal basis (r,s,t), see next slide
- Rotate around $\mathbf{x}$ axis
- Transform back with $\mathrm{R}^{-1}$
- Translate back to point $p$




$$
R(p, r, \phi)=T(p) M(r) R_{x}(\phi) M^{T}(r) \mathrm{T}(-\mathrm{p})
$$

## Rotation Around Some Axis

## - Compute orthonormal basis given a 3D vector r

- Using a numerically stable method
- Construct s such that it is normal to $r$ ( $r$ being normalized)
- Use fact that in 2D, orthogonal vector to $(x, y)$ is $(-y, x)$
- Do this in coordinate plane that has largest components
$\cdot s^{\prime}=\left\{\begin{array}{l}\left(0,-r_{z}, r_{y}\right) \text {, if } x=\operatorname{argmin}_{x, y, z}\left\{\left|r_{x}\right|,\left|r_{y}\right|,\left|r_{z}\right|\right\} \\ \left(-r_{z}, 0, r_{x}\right) \text {, if } y=\operatorname{argmin}_{x, y, z}\left\{\left|r_{x}\right|,\left|r_{y}\right|,\left|r_{z}\right|\right\} \\ \left(-r_{y}, r_{x}, 0\right), \text { if } z=\operatorname{argmin}_{x, y, z}\left\{\left|r_{x}\right|,\left|r_{y}\right|,\left|r_{z}\right|\right\}\end{array}\right.$
- Normalize
- $s=s^{\prime} /\left|s^{\prime}\right|$
- Compute $t$ as cross product
- $t=r \times s$
- r,s,t forms orthonormal basis, thus M transforms into this basis
- $M(r)=\left(\begin{array}{cccc}r_{x} & s_{x} & t_{x} & 0 \\ r_{y} & s_{y} & t_{y} & 0 \\ r_{z} & s_{z} & t_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$, inverse is given as its transpose: $M^{-1}=M^{T}$


## Concatenation of Transforms

- Multiply matrices to concatenate
- Matrix-matrix multiplication is not commutative (in general)
- Order of transformations matters!



## Transformations

- Line
- Transform end points
- Plane
- Transform three points
- Vector
- Translations to not act on vectors
- Normal vectors (e.g. plane in Hesse form)
- Problem: e.g. with non-uniform scaling




## Transforming Normals

- Dot product as matrix multiplication

$$
-n \cdot v=n^{T} v=\left(\begin{array}{lll}
n_{x} & n_{y} & n_{z}
\end{array}\right)\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)
$$

- Normal $\mathbf{N}$ on a plane
- For any vector $v$ in the plane: $n^{T} v=0$
- Find transformation $\boldsymbol{M}^{\prime}$ for normal vector, such that :

$$
\begin{array}{ccc}
\left(\boldsymbol{M}^{\prime} n\right)^{T}(\boldsymbol{M} v)=0 & & \boldsymbol{M}^{\prime T} \boldsymbol{M} \boldsymbol{M}^{-1}=1 \boldsymbol{M}^{-1} \\
& n^{T}\left(\boldsymbol{M}^{\prime T} \boldsymbol{M}\right) v=0 & \text { and thus }
\end{array} \boldsymbol{M}^{\prime T}=\boldsymbol{M}^{-1} \boldsymbol{M}^{\prime}=\left(\boldsymbol{M}^{-1}\right)^{T} .
$$

- $\boldsymbol{M}^{\prime}$ is the adjoint of $\boldsymbol{M}$
- Exists even for non-invertible matrices
- For $\boldsymbol{M}$ invertible and orthogonal: $M^{\prime}=\left(M^{-1}\right)^{T}=\left(M^{T}\right)^{T}=M$
- Remember:
- Normals are transformed by the transpose of the inverse of the $4 \times 4$ transformation matrix of points and vectors

