Computer Graphics

- Light Transport -

Philipp Slusallek

LIGHT

What is Light?

- Electro-magnetic wave propagating at speed of light

What is Light?

What is Light?

- Ray
- Linear propagation
- Geometrical optics / ray optics
- Vector
- Polarization
- Jones Calculus: matrix representation,
- Has been used in graphics with extended ray model
- Wave
- Diffraction, interference
- Maxwell equations: propagation of light
- Partial simulation possible using extended ray model, e.g. radar
- Particle
- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

What is Light?

- Ray
- Linear propagation
- Geometrical optics / ray optics
- Vector
- Polarization
- Jones Calculus: matrix representation,
- Has been used in graphics with extended ray model
- Wave
- Diffraction, interference
- Maxwell equations: propagation of light
- Partial simulation possible using extended ray model, e.g. radar
- Particle
- Light comes in discrete energy quanta: photons
- Quantum theory: interaction of light with matter
- Field
- Electromagnetic force: exchange of virtual photons
- Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

- Based on human visual perception
- Focused on macroscopic geometry (\rightarrow Reflection Models)
- Only tristimulus color model (e.g., RGB, \rightarrow Human Visual System)
- Psycho-physics: tone mapping, compression, ... (\rightarrow RIS course)
- Ray optic assumptions
- Macroscopic objects (micro scale geometry \rightarrow BRDF)
- Incoherent light (no laser; focus on power - not amplitude)
- No attenuation in free space (no participating media)
- Linear propagation
- Light: scalar, real-valued quantity
- Superposition principle: light contributions add up, do not interact
- Limitations
- No microscopic structures ($\approx \lambda$), no volumetric effects (for now)
- No polarization, no coherent light (e.g., laser, radar)
- No diffraction, interference, dispersion, etc. ...

Angle and Solid Angle

- The angle θ (in radians) subtended by a curve in the plane is the length of the corresponding arc on the unit circle: $I=\theta r=1$
- The solid angle $\Omega, d \omega$ subtended by an object is the surface area of its projection onto the unit sphere
- Units for solid angle: steradian [sr] (dimensionless, $\leq 4 \pi$)

Solid Angle in Spherical Coords

- Infinitesimally (!) small solid angle d \boldsymbol{d}
- In spherical coords ($d \theta, d \Phi$):
- $d u=r d \theta$
$-d v=r^{\prime} d \Phi=r \sin \theta d \Phi$
$-d A=d u d v=r^{2} \sin \theta d \theta d \Phi$
- $d \omega=d A / r^{2}=\sin \theta d \theta d \Phi$
- Finite solid angle
- Integration of area, e.g.

$$
\Omega=\int_{\phi_{0}}^{\phi_{1}} d \phi \int_{\theta_{0}(\phi)}^{\theta_{1}(\phi)} \sin \theta d \theta
$$

Solid Angle for a Surface

- The solid angle subtended by a small surface patch S with area $d A$ is obtained by (i) projecting it orthogonal to the vector r from the origin:

$d A \cos \theta$

and (ii) dividing by the squared distance to the origin: $\mathrm{d} \omega=\frac{\mathrm{d} A \cos \theta}{r^{2}}$

$$
\Omega=\iint_{S} \frac{\vec{r} \cdot \vec{n}}{r^{3}} d A
$$

Radiometry

- Definition:
- Radiometry is the science of measuring radiant energy transfer. Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral radiometers.
- Radiometric Quantities
- Energy
- Radiant power
- Intensity
- Irradiance
- Radiosity
- Radiance
[J]
[watt $=\mathrm{J} / \mathrm{s}$]
[watt/sr]
[watt/m²]
[watt $/ \mathrm{m}^{2}$]
[watt/(m² sr)]

Spectroradiometers

© pro-lite.co.uk
(\#Photons x Energy $=n \cdot h v$)
(Total Flux)
(Flux from a point per s.angle)
(Incoming flux per area)
(Outgoing flux per area)
(Flux per area \& proj. s. angle)

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer
- Radiance L is defined as
- The power (flux) traveling through areas $\boldsymbol{d A}$ around some point x
- In a specified direction $\omega=(\theta, \varphi)$
- Per unit area perpendicular to the direction of travel
- Per unit solid angle
\rightarrow \# photons through area and cone times their energy per second
- Thus, the differential power $\boldsymbol{d}^{2} \boldsymbol{\Phi}$ radiated through the differential solid angle $d \omega$, from the projected differential area $d A \cos \theta$ is:

$$
d^{2} \Phi=L(x, \omega) d A(x) \cos \theta d \omega
$$

Radiometric Quantities: Irradiance

- Irradiance E is defined as the total power per unit area (flux density) incident onto a surface. To obtain the total flux incident to $d A$, the incoming radiance L_{i} is integrated over the upper hemisphere Ω_{+}above the surface:

$$
\begin{gathered}
E \equiv \frac{d \Phi}{d A} \\
d \Phi=\left[\int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta d \omega\right] d A \\
E(x)=\int_{\Omega_{+}} L_{i}(x, \omega) \cos \theta d \omega=\iint_{00}^{2 \pi \frac{\pi}{2}} L_{i}(x, \omega) \cos \theta \sin \theta d \theta d \phi
\end{gathered}
$$

Radiometric Quantities: Radiosity

- Radiosity B is defined as the total power per unit area (flux density) leaving a surface. To obtain the total flux leaving some area $d A$, the outgoing radiance L_{0} is integrated over the upper hemisphere Ω_{+}:

$$
\begin{gathered}
B \equiv \frac{d \Phi}{d A} \\
d \Phi=\left[\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta d \omega\right] d A \\
B(x)=\int_{\Omega_{+}} L_{o}(x, \omega) \cos \theta d \omega=\iint_{00}^{2 \pi \frac{\pi}{2}} L_{o}(x, \omega) \cos \theta \sin \theta d \theta d \phi
\end{gathered}
$$

Spectral Properties

- Wavelength
- Light is composed of electromagnetic waves
- These waves have different frequencies (and wavelengths)
- Most transfer quantities are continuous functions over the spectrum
- In graphics
- Each measurement $L(x, \omega)$ is for a discrete band of wavelength only
- Often R(ed, long), G (reen, medium), $B($ lue, short) (but see later)

Photometry

- The human eye is sensitive to a limited range of wavelengths
- Roughly from 380 nm to 780 nm
- Our visual system responds differently to different wavelengths
- Can be characterized by the Luminous Efficiency Function V(λ)
- Represents the average human spectral response
- Separate curves exist for light and dark adaptation of the eye
- Photometric quantities are derived from radiometric quantities by integrating them against this function
- More details later \rightarrow Human Visual System

Radiometry vs. Photometry

Radiometry (physics-based quantities)	\rightarrow	c Photometry (perception-based quantities)		
W	Radiant power	\rightarrow	Luminous power	Im (lumens)
$\mathrm{W} / \mathrm{m}^{2}$	Radiosity	\rightarrow	Luminosity	
$\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}$	Radiance	\rightarrow	Illuminance	$\mathrm{Im} / \mathrm{m}^{2}$ (lux)
W / sr	Radiant intensity	\rightarrow	Luminous intensity	cd (candela)

English	German	\rightarrow	English	German
Radiant power	Strahlungsleistung	\rightarrow	Luminous power	Lichtstrom
Radiosity	Spezifische Ausstrahlung	\rightarrow	Luminosity	Leuchtkraft
Irradiance	Bestrahlungsstärke	\rightarrow	Illuminance	Beleuchtungsstärke
Radiance	Strahldichte	\rightarrow	Luminance	Leuchtdichte
Radiant intensity	Strahlstärke	\rightarrow	Luminous intensity	Lichtstärke

Perception of Light

photons $/$ second $=$ flux $=$ energy $/$ time $=\operatorname{power}(\boldsymbol{\Phi})$
Solid angle of a rod $=$ resolution (≈ 1 arcminute 2) projected rod size $=\operatorname{area} \mathbf{A}$
angular extent of pupil aperture $(r \leq 4 \mathrm{~mm})=$ solid angle flux proportional to area and solid angle
radiance $=$ flux per unit area per unit solid angle

As l increases: $\quad \Phi_{0}=L \cdot l^{2} \cdot \Omega \cdot \pi \frac{r^{2}}{l^{2}}=L \cdot$ const
rod sensitive to flux
Ω
$A \approx l^{2} \cdot \Omega$
$\Omega^{\prime} \approx \pi \cdot r^{2} / l^{2}$
$\Phi=L \mathrm{~A} \Omega^{\prime}$
$L=\frac{\Phi}{\Omega^{\prime} \cdot A}$

The eye detects radiance

Brightness Perception

A^{\prime} (area of object)

- $A^{\prime}>A$: area of sun covers more than one rod: photon flux per rod stays constant
- $A^{\prime}<A$: photon flux per rod decreases

Where does the Sun turn into a star ?

- Depends on apparent Sun disc size on retina
- Photon flux per rod stays the same on Mercury, Earth or Neptune
- Photon flux per rod decreases when $\Omega^{\prime}<1$ arcminute ${ }^{2}$ (\sim beyond Neptune)

Radiance in Space

Flux leaving surface 1 must be equal to flux arriving on surface 2

$$
L_{1} d \Omega_{1} d A_{1}=L_{2} d \Omega_{2} d A_{2}
$$

From geometry follows $d \Omega_{1}=\frac{d A_{2}}{l^{2}} \quad d \Omega_{2}=\frac{d A_{1}}{l^{2}}$
Ray throughput $T: \quad T=d \Omega_{1} \cdot d A_{1}=d \Omega_{2} \cdot d A_{2}=\frac{d A_{1} \cdot d A_{2}}{l^{2}}$

$$
L_{1}=L_{2}
$$

The radiance in the direction of a light ray remains constant as it propagates along the ray

Point Light Source

- Point light with isotropic (same in all dir.) radiance
- Power (total flux) of a point light source
- $\Phi_{g}=$ Power of the light source [watt]
- Intensity of a light source (radiance cannot be defined, no area)
- $I=\Phi_{g} / 4 \pi$ [watt/sr]
- Irradiance on a sphere with radius r around light source:
- $E_{r}=\Phi_{g} /\left(4 \pi r^{2}\right)\left[\mathrm{watt} / \mathrm{m}^{2}\right]$
- Irradiance on some other surface A
$E(x)=\frac{d \Phi_{g}}{d A}=\frac{d \Phi_{g}}{d \omega} \frac{d \omega}{d A}=I \frac{d \omega}{d A}$
$=\frac{\Phi_{g}}{4 \pi} \cdot \frac{d A \cos \theta}{r^{2} d A}$
$=\frac{\Phi_{g}}{4 \pi} \cdot \frac{\cos \theta}{r^{2}}=\frac{\Phi_{g}}{4 \pi r^{2}} \cdot \cos \theta$

Inverse Square Law

- Irradiance E: power per \mathbf{m}^{2}
- Illuminating quantity
- Distance-dependent
- Double distance from emitter: area of sphere is four times bigger
- Irradiance falls off with inverse of squared distance
- Only for point light sources (!)

Light Source Specifications

- Power (total flux)
- Emitted energy / time
- Active emission size
- Point, line, area, volume
- Spectral distribution
- Thermal, line spectrum
- Directional distribution
- Goniometric diagram

Black body radiation (see later)

Sky Light

- Sun
- Point source (approx.)
- White light (by def.)
- Sky
- Area source
- Scattering: blue
- Horizon
- Brighter
- Haze: whitish
- Overcast sky
- Multiple scattering in clouds
- Uniform grey
- Several sky models are available

Courtesy Lynch \& Livingston

LIGHT TRANSPORT

Light Transport in a Scene

- Scene
- Lights (emitters)
- Object surfaces (partially absorbing)
- Illuminated object surfaces become emitters, too!
- Radiosity = Irradiance minus absorbed photons flux density
- Radiosity: photons per second per m^{2} leaving surface
- Irradiance: photons per second per m^{2} incident on surface
- But also need to look at directional distribution
- Light bounces between all mutually visible surfaces
- Invariance of radiance in free space
- No absorption in-between objects
- Dynamic energy equilibrium in a scene
- Emitted photons = absorbed photons (+ escaping photons)
\rightarrow Global Illumination, discussed in RIS lecture

Surface Radiance

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Visible surface radiance
- Surface position
- Outgoing direction
- Incoming illumination direction
- Emission

- Reflected light
- Incoming radiance from all directions $L_{i}\left(x, \omega_{i}\right)$
- Direction-dependent reflectance (BRDF: bidirectional reflectance

$$
f_{r}\left(\omega_{i}, x, \omega_{o}\right)
$$

Rendering Equation

- Most important equation for graphics
- Expresses energy equilibrium in scene

$$
\begin{aligned}
& \qquad L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& \text { total radiance }=\text { emitted } \quad+\quad \text { reflected radiance }
\end{aligned}
$$

- First term: Emission from the surface itself
- Non-zero only for light sources
- Second term: reflected radiance
- Integral over all possible incoming directions of radiance times angle-dependent surface reflection function
- Fredholm integral equation of $2 n d$ kind
- Difficulty: Unknown radiance appears both on the left-hand side and inside the integral
- Numerical methods necessary to compute approximate solution

RE: Integrating over Surfaces

- Outgoing illumination at a point

$$
\begin{aligned}
& L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+L_{r}\left(x, \omega_{o}\right) \\
& L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
\end{aligned}
$$

- Linking with other surface points
- Incoming radiance at x is outgoing radiance at y

$$
L_{i}\left(x, \omega_{i}\right)=L\left(y,-\omega_{i}\right)=L\left(R T\left(x, \omega_{i}\right),-\omega_{i}\right)
$$

- Ray-Tracing operator: $\operatorname{RT}\left(x, \omega_{i}\right)=y$

Integrating over Surfaces

- Outgoing illumination at a point

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Re-parameterization over surfaces S

$$
d \omega_{i}=\frac{\cos \theta_{y}}{\|x-y\|^{2}} d A_{y}
$$

Integrating over Surfaces

$$
\begin{aligned}
& L\left(x, \omega_{o}\right) \\
& =L_{e}\left(x, \omega_{o}\right)+\int_{y \in S} f_{r}\left(\omega(x, y), x, \omega_{o}\right) L_{i}(x, \omega(x, y)) V(x, y) \frac{\cos \theta_{i} \cos \theta_{y}}{\|x-y\|^{2}} d A_{y}
\end{aligned}
$$

- Geometry term: $G(\mathrm{x}, \mathrm{y})=V(x, y) \frac{\cos \theta_{i} \cos \theta_{y}}{\|x-y\|^{2}}$
- Visibility term: $V(x, y)=\left\{\begin{array}{l}1, \text { if visible } \\ 0, \text { otherwise }\end{array}\right.$
- Integration over all surfaces: $\int_{y \in S} \cdots d A_{y}$

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{y \in S} f_{r}\left(\omega(x, y), x, \omega_{o}\right) L_{i}(x, \omega(x, y)) G(x, y) d A_{y}
$$

Rendering Equation: Approximations

- Approximations based only on empirical foundations
- An example: rasterization e.g. in OpenGL (\rightarrow later)
- Using RGB instead of full spectrum
- Follows roughly the eye's sensitivity (L, f_{r} are 3D vectors for RGB)
- Sampling hemisphere only at discrete directions
- Simplifies integration to a summation (only directly to light sources)
- Reflection function model (BRDF, see later)
- Approximation by parameterized functions
- Diffuse: light reflected uniformly in all directions
- Specular: perfect reflection/refraction direction
- Glossy: mirror reflection, but from a rough surface
- And mixture thereof

Ray Tracing

$$
L\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{\Omega_{+}} f_{r}\left(\omega_{i}, x, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Simple ray tracing
- Illumination from discrete point light sources only - direct illumination only
- Integral \rightarrow sum of contributions from each light
- No global illumination
- Evaluates angle-dependent reflectance function (BRDF) - shading process
- Advanced ray tracing techniques
- Recursive ray tracing
- Multiple reflections/refractions (e.g. for specular surfaces)
- Ray tracing for global illumination
- Stochastic sampling (Monte Carlo methods) \rightarrow RIS course

Different Types of Illumination

- Three types of illumination computations in CG

Local
(without shadows, used in rasterization)

(with shadows)

- Ambient Illumination
- Global illumination is costly to compute
- Indirect illumination (through interreflections) is typically smooth
\rightarrow Approximate via a constant term $L_{i, a}$ (incoming ambient illum.)
- Has no incoming direction, provide ambient reflection term k_{a}
- Often chosen to be the same as the diffuse term $\left(k_{a}=k_{d}\right)$

$$
L_{o}\left(x, \omega_{o}\right)=k_{a} L_{i, a}
$$

