Computer Graphics

- Clipping -

Philipp Slusallek

Clipping

- Motivation

- Projected primitive might fall (partially) outside of screen window
- E.g., if standing inside a building
- Eliminate non-visible geometry early in the pipeline to process visible parts only
- Happens after transformation from 3D to 2D
- Must cut off parts outside the window
- Outside geometry might not be representable (e.g., in fixed point)
- Cannot draw outside of window (e.g., plotter (hardly exist anymore))
- Must maintain information properly
- Drawing the clipped geometry should give the correct results:
- E.g., correct interpolation of colors across triangle even when clipped
- Type of geometry might change
- Cutting off a vertex of a triangle produces a quadrilateral (up to hexagon)
- Might need to be split into triangles again
- Polygons must remain closed after clipping

Line Clipping

- Definition of clipping
- Cut off parts of objects which lie outside/inside of a defined region
- Often clip against viewport (2D) or canonical view-volume (3D)
- Let's focus first on lines only

Brute-Force Method

- Brute-force line clipping at the viewport
- If both end points p_{b} and p_{e} are inside viewport
- Accept the whole line
- Otherwise, clip the line at each edge
- $\mathrm{p}_{\text {intersection }}=p_{b}+t_{\text {line }}\left(p_{e}-p_{b}\right)=e_{b}+t_{\text {edge }}\left(e_{e}-e_{b}\right)$
- Solve for $t_{\text {line }}$ and $t_{\text {edge }}$
- Intersection within segment if both $0 \leq t_{\text {line }}, t_{\text {edge }} \leq 1$
- Replace suitable end points for the line by the intersection point
- Unnecessarily tests many cases that are irrelevant

Cohen-Sutherland (1974)

- Advantage: divide and conquer
- Efficient trivial accept and trivial reject
- Non-trivial case: divide and test
- Outcodes of points
- Bit encoding (outcode, OC)
- Each viewport edge defines a half space
- Set bit if vertex is outside w.r.t. that edge
- Trivial cases
- Trivial accept: both are in viewport
- $\left(O C\left(p_{b}\right)\right.$ OR OC $\left.\left(p_{e}\right)\right)==0$

1001	1000	1010
0001	0000	0010
0101	0100	0110

Bit order: top, bottom, right, left
Viewport ($\mathrm{x}_{\text {min }}, \mathrm{y}_{\text {min }}, \mathrm{x}_{\max }, \mathrm{y}_{\max }$)

- Trivial reject: both lie outside w.r.t. at least one common edge
- $\left(\mathrm{OC}\left(\mathrm{p}_{\mathrm{b}}\right)\right.$ AND OC($\left.\left.\mathrm{p}_{\mathrm{e}}\right)\right) \neq 0$
- Line has to be clipped to all edges where XOR bits are set, i.e. the points lies on different sides of that edge
- OC $\left(\mathrm{p}_{\mathrm{b}}\right)$ XOR OC($\left.\mathrm{p}_{\mathrm{e}}\right)$

Cohen-Sutherland

- Clipping of line (p1, p2)

```
oc1 = OC(p1); oc2 = OC(p2); edge = 0;
do {
    if ((oc1 AND oc2) != 0) // trivial reject of remaining segment
        return REJECT;
    else if ((oc1 OR oc2) == 0) // trivial accept of remaining segment
        return (ACCEPT, p1, p2);
        if ((oc1 XOR oc2) [edge]) {
        if (oc1[edge]) // p1 outside
        {p1 = cut(p1, p2, edge); oc1 = OC(p1);}
        else // p2 outside
            {p2 = cut(p1, p2, edge); oc2 = OC(p2);}
        }
} while (++edge < 4); // Not the most efficient solution
return ((oc1 OR oc2) == 0) ? (ACCEPT, p1, p2) : REJECT; 1000 1010
```

- Intersection calculation for $\boldsymbol{x}=\boldsymbol{x}_{\text {min }}$

$$
\begin{aligned}
& \frac{y-y_{b}}{y_{e}-y_{b}}=\frac{x_{\min }-x_{b}}{x_{e}-x_{b}} \\
y= & y_{b}+\left(x_{\min }-x_{b}\right) \frac{y_{e}-y_{b}}{x_{e}-x_{b}}
\end{aligned}
$$

Cyrus-Beck (1978)

- Parametric line-clipping algorithm
- Only convex polygons: max 2 intersection points
- Use edge orientation, via „normals" pointing out
- Idea: clipping against polygons
- Clip line $\mathrm{p}=p_{b}+t_{i}\left(p_{e}-p_{b}\right)$ against each edge
- Intersection points sorted by parameter t_{i}
- Select
- t_{in} : entry point $\left(\left(p_{e}-p_{b}\right) \cdot N_{i}<0\right)$ with largest t_{i}

- $\mathrm{t}_{\text {out }}$: exit point $\left(\left(p_{e}-p_{b}\right) \cdot N_{i}>0\right)$ with smallest t_{i}
- If $\mathrm{t}_{\text {out }}<\mathrm{t}_{\mathrm{in}}$, line lies completely outside (akin to ray-box intersect.)
- Intersection calculation

$$
\begin{gathered}
\left(p-p_{\text {edge }}\right) \cdot N_{i}=0 \\
t_{i}\left(p_{e}-p_{b}\right) \cdot N_{i}+\left(p_{b}-p_{\text {edge }}\right) \cdot N_{i}=0 \\
t_{i}=\frac{\left(p_{\text {edge }}-p_{b}\right) \cdot N_{i}}{\left(p_{e}-p_{b}\right) \cdot N_{i}}
\end{gathered}
$$

Liang-Barsky (1984)

- Cyrus-Beck for axis-aligned rectangles
- Using window-edge coordinates (with respect to an edge T)

$$
W E C_{T}(p)=\left(p-p_{T}\right) \cdot N_{T}
$$

- Example: top ($\mathbf{y}=\mathbf{y}_{\text {max }}$)

$$
\begin{gathered}
N_{T}=\binom{0}{1}, \quad p_{b}-p_{T}=\binom{x_{b}-x_{\text {max }}}{y_{b}-y_{\text {max }}} \\
t_{T}=\frac{\left(p_{b}-p_{T}\right) \cdot N_{T}}{\left(p_{b}-p_{e}\right) \cdot N_{T}}=\frac{\mathrm{WEC}_{T}\left(p_{b}\right)}{\mathrm{WEC}_{T}\left(p_{b}\right)-\mathrm{WEC}_{T}\left(p_{e}\right)}=\frac{y_{b}-y_{\max }}{y_{b}-y_{e}}
\end{gathered}
$$

- Window-edge coordinate (WEC): decision function for an edge
- Directed distance to edge
- Only sign matters, similar to Cohen-Sutherland opcode
- Sign of the dot product determines whether the point is in or out
- Normalization unimportant

Line Clipping - Summary

- Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D
- Cohen-Sutherland algorithm
+ Efficient when majority of lines can be trivially accepted / rejected
- Very large clip rectangles: almost all lines inside
- Very small clip rectangles: almost all lines outside
- Repeated clipping for remaining lines
- Testing for 2D/3D point coordinates
- Cyrus-Beck (Liang-Barsky) algorithms
+ Efficient when many lines must be clipped
+ Testing for 1D parameter values
- Testing intersections always for all clipping edges (in the LiangBarsky trivial rejection testing possible)

Polygon Clipping

- Extended version of line clipping
- Condition: polygons have to remain closed
- Filling, hatching, shading, ...

Sutherland-Hodgeman (1974)

- Idea
- Iterative clipping against each edge in sequence

- Four different local operations based on sides of p_{i-1} and p_{i}

inside outside output: $\mathbf{p}_{\mathbf{i}}$

inside outside output: p

Enhancements

- Recursive polygon clipping
- Pipelined Sutherland-Hodgeman

- Problems
- Degenerated polygons/edges
- Elimination by post-processing, if necessary

Other Clipping Algorithms

- Weiler \& Atherton ('77)
- Arbitrary concave polygons with holes against each other
- Vatti ('92)
- Also with self-overlap
- Greiner \& Hormann (TOG '98)
- Simpler and faster as Vatti
- Also supports Boolean operations
- Idea:

- Odd winding number rule
- Intersection with the polygon leads to a winding number ± 1
- Walk along both polygons
- Alternate winding number value
- Mark point of entry and point of exit
- Combine results

Greiner \& Hormann

A in B

B in A

$(A$ in $B) U(B$ in $A)$

3D Clipping agst. View Volume

- Requirements
- Avoid unnecessary rasterization
- Avoid overflow on transformation at fixed point!
- Clipping against viewing frustum
- Enhanced Cohen-Sutherland with 6-bit outcode
- After perspective division
- $-1<y<1$
- $-1<x<1$
- $-1<z<0$
- Clip against side planes of the canonical viewing frustum
- Works analogously with Liang-Barsky or Sutherland-Hodgeman

3D Clipping agst. View Volume

- Clipping in homogeneous coordinates
- Use canonical view frustum, but avoid costly division by W
- Inside test with a linear distance function (WEC)
- Left: $X / W>-1 \quad \rightarrow W+X=W E C_{L}(\underline{p})>0$
- Top: $\mathrm{Y} / \mathrm{W}<1 \rightarrow \mathrm{~W}-\mathrm{Y}=\mathrm{WEC}_{\mathrm{T}}(\underline{\mathrm{p}})>0$
- Back: $Z / W>-1 \rightarrow W+Z=W E C_{B}(\underline{p})>0$
- ...
- Intersection point calculation (before homogenizing)
- Test: $\mathrm{WEC}_{\mathrm{L}}\left(\mathrm{p}_{\mathrm{b}}\right)>0$ and $\mathrm{WEC}_{\mathrm{L}}\left(\mathrm{p}_{\mathrm{e}}\right)<0$
- Calculation:

$$
\begin{aligned}
& W E C\left(p_{b}+t\left(p_{e}-p_{b}\right)\right)=0 \\
& W_{b}+t\left(W_{e}-W_{b}\right)+X_{b}+t\left(X_{e}-X_{b}\right)=0 \\
& t=\frac{W_{b}+X_{b}}{\left(W_{b}+X_{b}\right)-\left(W_{e}+X_{e}\right)}=\frac{W E C_{L}\left(p_{b}\right)}{W E C_{L}\left(p_{b}\right)-W E C_{L}\left(p_{e}\right)}
\end{aligned}
$$

Problems with Homogen. Coord.

- Negative w
- Points with $\mathrm{w}<0$ or lines with $\mathrm{w}_{\mathrm{b}}<0$ and $\mathrm{w}_{\mathrm{e}}<0$
- Negate and continue
- Lines with $\mathrm{w}_{\mathrm{b}} \cdot \mathrm{w}_{\mathrm{e}}<0$ (NURBS)
- Line moves through infinity
- External „line"
- Clipping two times
- Original line
- Negated line
- Generates up to two segments

Practical Implementations

- Combining clipping and scissoring
- Clipping is expensive and should be avoided
- Intersection calculation
- Variable number of new points, new triangles
- Enlargement of clipping region
- (Much) larger than viewport, but
- Still avoiding overflow due to fixed-point representation
- Result
- Less clipping
- Applications should avoid drawing objects that are outside of the viewport/viewing frustum
- Objects that are still partially outside will be implicitly clipped during rasterization
- Slight penalty because they will still be processed (triangle setup)

Clipping region

