
Alexander Rath
Philipp Slusallek

Slides by Philipp Slusallek
and Piotr Danilewski

Computer Graphics

- Transformations -

Overview
• Last time

– Introduction to Ray Tracing
• Today

– Vector spaces and affine spaces
– Homogeneous coordinates
– Basic transformations in homogeneous coordinates
– Concatenation of transformations
– Projective transformations

Vector Space
• Math recap

– 3D vector space over the real numbers

• 𝒗 =
𝑣!
𝑣"
𝑣#

∈ 𝑽𝟑 = ℝ𝟑

– Vectors written as n x 1 matrices
– Vectors describe directions – not positions!

• All vectors start from the origin of the coordinate system
– 3 linear independent vectors create a basis

• Standard basis

𝒆!, 𝒆", 𝒆# =
1
0
0

,
0
1
0

,
0
0
1

– Any vector can now be represented uniquely with coordinates 𝑣!
• 𝒗 = 𝑣!𝒆𝟏 + 𝑣"𝒆𝟐 + 𝑣#𝒆𝟑	 𝑣!, 𝑣", 𝑣# 	 ∈ ℝ

e1

e2

e3

Vector Space - Metric
• Standard scalar product a.k.a. dot or inner product

– Measure lengths
• 𝑣 " = 𝑣 ⋅ 𝑣 = 𝑣!" + 𝑣"" + 𝑣#"

– Compute angles
• 𝑢 ⋅ 𝑣 = 𝑢 𝑣 cos(𝑢, 𝑣)

– Projection of vectors onto other vectors
• 𝑢 cos(𝜃) = '⋅)

)
= '⋅)

)⋅)

u

v
ɵ

𝑢 cos(𝜃)

Vector Space - Basis
• Orthonormal basis

– Unit length vectors
• 𝑒! = 𝑒! = 𝑒! =1

– Orthogonal to each other
• 𝑒* ⋅ 𝑒+ = 𝛿*+

• Handedness of the coordinate system
– 𝑒"×𝑒# = ±𝑒$

• Positive: Right-handed
• Negative: Left-handed

Affine Space
• Basic mathematical concepts

– Denoted as A3
• Elements are positions (not directions)

– Defined via its associated vector space V3
• 𝑎, 𝑏 ∈ 𝐴# ⇔ ∃! 𝑣 ∈ 𝑉#: 𝑣 = 𝑏 − 𝑎
• →: unique, ←: ambiguous

– Operations on A3
• Subtraction yields a vector
• No addition of affine elements

– Its not clear what the some of to points would mean
• But: Addition of points and vectors:

– 𝑎 + 𝑣 = 𝑏 ∈ 𝐴!

• Distance
– 𝑑𝑖𝑠𝑡 𝑎, 𝑏 = 𝑎 − 𝑏

v
b

a

Affine Space - Basis
• Affine Basis

– Given by its origin o (a point) and the basis of an associated
vector space

• 	𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒐 : 	 𝒆𝟏, 𝒆𝟐, 𝒆𝟑 ∈ 𝑉#; 𝒐 ∈ 𝑨𝟑

• Position vector of point p
– (𝑝 − 𝑜)	is in 𝑉3

e1

e2

e3

o

p

p-o

Affine Coordinates
• Affine Combination

– Linear combination of (n+1) points
• 𝑝-, … , 𝑝. ∈ 𝐴.

– With weights forming a partition of unity
• 𝛼-, … , 𝛼. ∈ 	ℝ	with	 ∑* 𝛼* = 1

– 𝑝 = ∑!%&' 𝛼!𝑝! = 𝑝& + ∑!%"' 𝛼!(𝑝! − 𝑝&) = 𝑜 + ∑!%"' 𝛼!𝑣!
• Basis

– (𝑛 + 1) points form am affine basis of 𝐴𝑛
• Iff none of these point can be expressed as an affine combination of

the other points
• Any point in 𝐴. can then be uniquely be represented as an affine

combination of the affine basis 𝑝-, … , 𝑝. ∈ 𝐴.

• Any vector in another basis can be expressed as a linear
combination of the 𝑝*, yielding a matrix for the basis

Affine Coordinates
• Closely related to “Barycentric Coordinates”

– Center of mass of (𝑛 + 1) points
with arbitrary masses (weights) 𝑚! is given as

• 𝑝 = ∑1!2!
∑1!

= ∑ 1!
∑1!

𝑝* = ∑𝛼*𝑝*

• Convex / Affine Hull
– If all 𝛼! are non-negative than p is in the convex hull

of the other points
• In 1D

– Point is defined by the splitting ratio 𝛼": 𝛼#
• 𝑝 = 𝛼!𝑝! + 𝛼"𝑝" =

232"
2"32#

𝑝! +
232#
2"32#

𝑝"

• In 2D
– Weights are the relative areas in Δ(𝐴", 𝐴#, 𝐴$)

• 𝑡* = 𝛼* =
4(6,8 !$# %&,8 !$" %&)

4(8#,8",8&)

• 𝑝 = 𝛼!𝐴! + 𝛼"𝐴" + 𝛼#𝐴#

p

p1

p2

𝛼
" 	 : 𝛼

!

𝐴! 𝐴"

𝐴#
Note: Length and area
measures need to be signed here

Affine Mappings
• Properties

– Affine mapping (continuous, bijective, invertible)
• T: A3 → A3

– Defined by two non-degenerated simplicies
• 2D: Triangle, 3D: Tetrahedron, ...

– Invariants under affine transformations:
• Barycentric/affine coordinates
• Straight lines, parallelism, splitting ratios, surface/volume ratios

– Characterization via fixed points and lines
• Given as eigenvalues and eigenvectors of the mapping

• Representation
– Matrix product and a translation vector:

• 𝑻𝑝 = 𝑨𝑝 + 𝒕	with	A ∈ ℝ.×.,	t ∈ ℝ.

– Invariance of affine coordinates
• 𝑻𝑝 = 𝑻 ∑𝛼*𝑝* = 𝑨 ∑𝛼*𝑝* + 𝒕 = ∑𝛼*(𝑨𝑝*) + ∑𝛼*𝒕 = ∑𝛼*(𝑻𝑝*)

Homogeneous Coordinates for 3D
• Homogeneous embedding of R3 into the projective 4D

space P(R4)
– Mapping into homogeneous space

• ℝ! ∋
𝑥
𝑦
𝑧

⟶

𝑥
𝑦
𝑧
1

∈ 𝑃 ℝ"

– Mapping back by dividing through fourth component

•

𝑋
𝑌
𝑍
𝑊

⟶
𝑋/𝑊
𝑌/𝑊
𝑍/𝑊

• Consequence
– This allows to represent affine transformations as 4x4 matrices
– Mathematical trick

• Convenient representation to express rotations and translations as
matrix multiplications

• Easy to find line through points, point-line/line-line intersections
– Also important for projections (later)

Point Representation in 2D
• Point in homogeneous coordinates

– All points along a line through the origin map to the same point in
2D

(x,y)

𝑝 = (𝑋, 𝑌,𝑊)

w=1

𝑥 =
𝑋
𝑊

𝑦 =
𝑌
𝑊

Homogeneous Coordinates in 2D
• Some tricks (works only in P(R3), i.e. only in 2D)

– Point representation

• 𝑋 =
𝑋
𝑌
𝑊

∈ 𝑃 ℝ# ,
𝑥
𝑦 = ⁄𝑋 𝑊

⁄𝑌 𝑊

– Representation of a line 𝑙 ∈ ℝ#
• Dot product of l vector with point in plane must be zero:

– 𝑙 = /
𝑥
𝑦 𝑎𝑥 + 𝑏𝑦 + 𝑐 ⋅ 1 = 0 = |𝑋 ∈ 𝑃(ℝ!) 𝑋 ⋅ 𝑙 = 0,	l=

𝑎
𝑏
𝑐

• Line l is normal vector of the plane through origin and points on line
– Intersection of lines l and l’:

• Point on both lines è point must be orthogonal to both line vectors
• 𝑋 ∈ 𝑙 ∩ 𝑙; ⇔ 𝑋 = 𝑙×𝑙′

– Line trough 2 points p and p’
• Line must be orthogonal to both points
• 𝑝 ∈ 𝑙	 ∧ 	𝑝′ ∈ 𝑙 ⇔ 𝑙 = 𝑝×𝑝;

Affine view
• 𝑷𝒏 ℝ - projective space
• ℝ5 - affine view

– typically: last coordinate =1

x

y

z

𝑷𝒏 ℝ

𝑷𝒏 ℝ ℝ=

lines points
ℝ=

Affine view
• 𝑷𝒏 ℝ - projective space
• ℝ5 - affine view

– typically: last coordinate =1

𝑷𝒏 ℝ ℝ=

lines

planes

points

lines

x

y

z

Intersections
• 𝑷𝒏 ℝ - projective space
• ℝ5 - affine view

𝑷𝒏 ℝ ℝ=

plane-plane

line

line-line

point
x

y

z

Intersections
• 𝑷𝒏 ℝ - projective space
• ℝ5 - affine view

𝑷𝒏 ℝ ℝ=

plane-plane

line

parallel
line-line

point
at infinity

x

y

z

Orthonormal Matrices
• Columns are orthogonal vectors of unit length

– An example

•
0 0 1
1 0 0
0 1 0

– Directly derived from the definition of the matrix product
• 𝑀>𝑀 = 1

– In this case the transpose must be identical to the inverse
• 𝑀3! ≔ 𝑀>

Linear Transformation: Matrix
• Transformations in a Vector space: Multiplication by

a Matrix
– Action of a linear transformation on a vector

• Multiplication of matrix with column vector (e.g. in 3D)

𝑝; =
𝑋;
𝑌;
𝑍;

= 𝑻𝑝 =
𝑇?? 𝑇?@ 𝑇?A
𝑇@? 𝑇@@ 𝑇@A
𝑇A? 𝑇A@ 𝑇AA

𝑋
𝑌
𝑍

• Composition of transformations
– Simple matrix multiplication (𝑻𝟏, then 𝑻𝟐)

• 𝑻𝟐𝑻𝟏𝑝 = 𝑻𝟐 𝑻𝟏𝑝 = 𝑻𝟐𝑻𝟏 𝑝 = 𝑻𝑝
– Note: matrix multiplication is associative but not commutative!

• 𝑻𝟐𝑻𝟏 is not the same as 𝑻𝟏𝑻𝟐	(in general)

Affine Transformation
• Remember:

– Affine map: Linear mapping and a translation
• 𝑻𝑝 = 𝑨𝑝 + 𝒕

• For 3D: Combining it into one matrix
– Using homogeneous 4D coordinates
– Multiplication by 4x4 matrix in P(R4) space

• 𝑝; =
𝑋;
𝑌;
𝑍′
𝑊′

= 	𝑇𝑝 =

𝑇?? 𝑇?@ 𝑇?A 𝑇?B
𝑇@? 𝑇@@ 𝑇@A 𝑇@B
𝑇A? 𝑇A@ 𝑇AA 𝑇AB
𝑇B? 𝑇B@ 𝑇BA 𝑇BB

𝑋
𝑌
𝑍
𝑊

– Allows for combining (concatenating) multiple transforms into one
using normal (4x4) matrix product

• Let’s go through the different transforms we need:

Transformations: Translation
• Translation (T)

– 𝑻 𝑡*, 𝑡+, 𝑡, 𝑝 =

1 0 0 𝑡*
0 1 0 𝑡+
0 0 1 𝑡,
0 0 0 1

𝑥
𝑦
𝑧
1

=

𝑥 + 𝑡*
𝑦 + 𝑡+
𝑧 + 𝑡,
1

T(2,1)B

B x

y

Translation of Vectors
• So far: only translated points
• Vectors: Difference between 2 points

– 𝑣 = 𝑝 − 𝑞 =

𝑝*
𝑝+
𝑝,
1

−

𝑞*
𝑞+
𝑞,
1

=

𝑝* − 𝑞*
𝑝+ − 𝑞+
𝑝, − 𝑞,
0

– Fourth component is zero
• Consequently: Translations do not affect vectors!

• 𝑻 𝑡? , 𝑡@ , 𝑡A 𝑣 =

1 0 0 𝑡?
0 1 0 𝑡@
0 0 1 𝑡A
0 0 0 1

𝑣?
𝑣@
𝑣A
0

=

𝑣?
𝑣@
𝑣A
0

Translation: Properties
• Properties

– Identity
• 𝑻 0,0,0 = 𝟏	(Identity	Matrix)

– Commutative (special case)
• 𝑻 𝑡? , 𝑡@ , 𝑡A 𝑻 𝑡?; , 𝑡@; , 𝑡A; = 𝑻 𝑡?; , 𝑡@; , 𝑡A; 𝑻 𝑡? , 𝑡@ , 𝑡A =

𝑻(𝑡? + 𝑡?; , 𝑡@ + 𝑡@; , 𝑡A + 𝑡A;)
– Inverse

• 𝑻3𝟏 𝑡? , 𝑡@ , 𝑡A = 𝑻 −𝑡?; , −𝑡@; , −𝑡A;

Basic Transformations (2)
• Scaling (S)

– 𝐒 𝑠*, 𝑠+, 𝑠, =

𝑠* 0 0 0
0 𝑠+ 0 0
0 0 𝑠, 0
0 0 0 1

– Note: 𝑠*, 𝑠+, 𝑠, ≥ 0 (otherwise see mirror transformation)
– Uniform Scaling s: s = 𝑠* = 𝑥+ = 𝑠,

B x

y

S(2,1)B x

y

Basic Transformations
• Reflection/Mirror Transformation (M)

– Reflection at plane (x=0)

• 𝑴𝒙 =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝑥
𝑦
𝑧
1

=

−𝑥
𝑦
𝑧
1

• Analogously for other axis
• Note: changes orientation

– Right-handed becomes left-handed and v.v.
– Indicated by det 𝑀# < 0

– Reflection at origin

• 𝑴𝒐 =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

𝑥
𝑦
𝑧
1

=

−𝑥
−𝑦
−𝑧
1

• Note: changes orientation in 3D
– But not in 2D (!!!): Just two scale factors
– Each scale factor reverses orientation once

B

x

y
Mx B

B

x

y

Mo B

Basic Transformations (4)
• Shear (H)

– 𝑯 ℎ*+, ℎ*,, ℎ+,, ℎ+*, ℎ,*, ℎ,+ =
1 ℎ*+ ℎ*, 0
ℎ+* 1 ℎ+, 0
ℎ,* ℎ,+ 1 0
0 0 0 1

𝑥
𝑦
𝑧
1

=

𝑥 + ℎ*+𝑦 + ℎ*,𝑧
𝑦 + ℎ+*𝑥 + ℎ+,𝑧
𝑧 + ℎ,*𝑥 + ℎ,+𝑦

1

– Determinant is 1
• Volume preserving (as volume is just shifted in some direction)

B x

y

H(1,0,0,0,0,0)B
x

y

Rotation in 2D
• In 2D: Rotation around origin

– Representation in spherical coordinates

• 𝑥 = 𝑟 cos 𝜃 ⟶ 𝑥; = 𝑟 cos(𝜃 + 𝜙)
𝑦 = 𝑟 sin 𝜃 ⟶ 𝑦; = 𝑟 sin(𝜃 + 𝜙)

– Well know property

• cos 𝜃 + 𝜙 = cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙
sin 𝜃 + 𝜙 = cos 𝜃 sin𝜙 + sin 𝜃 cos𝜙

– Gives

• 𝑥; = 𝑟 cos 𝜃 cos𝜙 − 𝑟 sin 𝜃 sin𝜙 = 𝑥 cos𝜙 − 𝑦 sin𝜙
𝑦; = 𝑟 cos 𝜃 sin𝜙 + 𝑟 sin 𝜃 cos𝜙 = 𝑥 sin𝜙 + 𝑦 cos𝜙

– Or in matrix form

• 𝑅A 𝜙 = cos𝜙 −sin𝜙
sin𝜙 cos𝜙

R(90°)B

B x

y

x

y
ɵ
ɸ

x’

y’

Rotation in 3D
• Rotation around major axes

– 𝑹𝒙 𝜙 =

1 0 0 0
0 cos𝜙 −sin𝜙 0
0 sin𝜙 cos𝜙 0
0 0 0 1

– 𝑹𝒚 𝜙 =

cos𝜙 0 sin𝜙 0
0 1 0 0

− sin𝜙 0 cos𝜙 0
0 0 0 1

– 𝑹𝒛 𝜙 =

cos𝜙 −sin𝜙 0 0
sin𝜙 cos𝜙 0 0
0 0 1 0
0 0 0 1

– 2D rotation around the respective axis
• Assumes right-handed system, mathematically positive direction

– Be aware of change in sign on sines in 𝑹𝒚
• Due to relative orientation of other axis

Rotation in 3D (2)
• Properties

– 𝑹𝒂 0 = 𝟏
– 𝑹𝒂 𝜃 𝑹𝒂 𝜙 = 𝑹𝒂 𝜃 + 𝜙 = 𝑹𝒂 𝜙 𝑹𝒂 𝜃

• Rotations around the same axis are commutative (special case)
– In general: Not commutative

• 𝑹𝒂 𝜃 𝑹𝒃 𝜙 ≠ 𝑹𝒃 𝜙 𝑹𝒂 𝜃
• Order does matter for rotations around different axes

– 𝑹𝒂.𝟏 𝜃 = 𝑹𝒂 −𝜃 = 𝑹𝒂𝑻 𝜃
• Orthonormal matrix: Inverse is equal to the transpose

– Determinant is 1
• Volume preserving

Rotation Around Point
• Rotate object around a point p and axis a

– Translate p to origin, rotate around axis a, translate back to p
• 𝑹𝒂 𝑝, 𝜃 = 𝑻 𝑝 𝑹𝒂 𝜙 𝑻 −𝑝

B x

y

p

B’= T(-p)B
x

y

p

B’’= Rz(ɸ)B’
x

y

p

T(p)B’’
x

y

p

Rotation Around Some Axis
• Rotate around a given point p and vector r (|r|=1)

– Translate so that p is in the origin
– Transform with rotation R=MT

• M given by orthonormal basis (r,s,t) such that r becomes the x axis
• Requires construction of a orthonormal basis (r,s,t), see next slide

– Rotate around x axis
– Transform back with R-1

– Translate back to point p

x

y

z

r

t

s x

y

z
rt

s

x

y

z

r
t

MT M

𝑅 𝑝, 𝑟, 𝜙 = 𝑇(𝑝)𝑀(𝑟)𝑅? 𝜙 𝑀>(𝑟)T(−p)

s

Figure without
translation aspect

Rotation Around Some Axis
• Compute orthonormal basis given a vector r

– Using a numerically stable method
– Construct s such that its normal to r (verify with dot product)

• Use fact that in 2D, orthogonal vector to (x,y) is (-y, x)
– Do this in coordinate plane that has largest components

• 𝑠’ =
0, −𝑟A , 𝑟@ , if	𝑥 = argmin?,@,A 𝑟? , 𝑟@ , 𝑟A
−𝑟A , 0, 𝑟? , if	𝑦 = argmin?,@,A 𝑟? , 𝑟@ , 𝑟A
−𝑟@ , 𝑟? , 0 , if	𝑧 = argmin?,@,A 𝑟? , 𝑟@ , 𝑟A

– Normalize
• 𝑠 = ⁄𝑠′ 𝑠′

– Compute t as cross product
• 𝑡 = 𝑟×𝑠

– r,s,t forms orthonormal basis, thus M transforms into this basis

• 𝑀(𝑟) =

𝑟? 𝑠? 𝑡? 0
𝑟@ 𝑠@ 𝑡@ 0
𝑟A 𝑠A 𝑡A 0
0 0 0 1

,	inverse	is	given	as	its	transpose:	𝑀3! = 𝑀>

Concatenation of Transforms
• Multiply matrices to concatenate

– Matrix-matrix multiplication is not commutative (in general)
– Order of transformations matters!

B x

y T(1,1)B

x

y

Rz(45°)B x

y

Rz(45°) T(1,1)B

x

y

T(1,1)Rz(45°)B

x

y

Transformations
• Line

– Transform end points
• Plane

– Transform three points
• Vector

– Translations to not act on vectors
• Normal vectors

– Problem: e.g. with non-uniform scaling

B x

y

n

S(2,1,1)B x

y

S(2,1,1)n
S(2,1,1)

Transforming Normals
• Dot product as matrix multiplication

– 𝑛 ⋅ 𝑣 = 𝑛0𝑣 = 𝑛* 𝑛+ 𝑛,
𝑣*
𝑣+
𝑣,

• Normal N on a plane
– For any vector 𝑣 in the plane: 𝑛0𝑣 = 0
– Find transformation 𝑴’ for normal vector, such that :

•
𝑴;𝑛 > 𝑴𝑣 = 0
𝑛> 𝑴;>𝑴 𝑣 = 0
𝑴;>𝑴 = 1

and thus
𝑴;>𝑴𝑴3! = 1𝑴3!

𝑴;> = 𝑴3!

𝑴; = 𝑴3!>

– 𝑴’ is the adjoint of 𝑴
• Exists even for non-invertible matrices
• For 𝑴 invertible and orthogonal 𝑀; = 𝑀3! > = 𝑀> > = 𝑀

• Remember:
– Normals are transformed by the transpose of the inverse of the

4x4 transformation matrix of points and vectors

USING TRANSFORMATIONS

Coordinate Systems
• Local (object) coordinate system (3D)

– Object vertex positions
– Can be hierarchically nested in each other (scene graph, transf.

stack)
• World (global) coordinate system (3D)

– Scene composition and object placement
• Rigid objects: constant translation, rotation per object, (scaling)
• Animated objects: time-varying transformation in world-space

– Illumination can be computed in this space

37

Hierarchical Coordinate Systems
• Hierarchy of transformations

T_root //Position of the character in world
T_ShoulderR //Right shoulder position
T_ShoulderRJoint //Shoulder rotation <== User
T_UpperArmR //Elbow position
T_ElbowRJoint //Elbow rotation <== User
T_LowerArmR //Wrist position
T_WristRJoint //Wrist rotation <== User
... //Hand and fingers...

T_ShoulderL //Left shoulder position
T_ShoulderLJoint //Shoulder rotation <== User
T_UpperArmL //Elbow position
T_ElbowLJoint //Elbow rotation <== User
T_LowerArmL //Wrist position
...

Hierarchical Coordinate Systems
• Used in Scene Graphs

– Group objects hierarchically
– Local coordinate system is relative to parent coordinate system
– Apply transformation to the parent to change the whole sub-tree

(or sub-graph)

Ray-tracing Transformed Objects

𝑜 + 𝑡𝑑

𝑀

𝑇

• Ray (world coordinates)
• 𝑇 – set of triangles (local coordinates)
• 𝑀 – transformation matrix (local-to-world)

𝑜 + 𝑡𝑑

𝑀

𝑇

• Option 1: transform the triangles
def transform(T,M)

out = {}
foreach p in T

q = M*p
out.insert(q)

out.rebuildIndexStructure()
return out

Transform(T,M).intersect(ray)

Ray-tracing Transformed Objects

𝑜 + 𝑡𝑑

𝑀3!

𝑇

• Option 2: transform the ray
def intersect(obj,ray)

Minv = obj.M.inverse()
N = obj.M.normalTransform()
local_ray = transform(ray,Minv)
hit = obj.intersect(local_ray)
global_hit.point = transform(hit.point,M)
global_hit.normal = transform(hit.normal,N)
return global_hit

Ray-tracing Transformed Objects

Transforming Tangents
• Transform ray by inverse and intersect object…

• …then transform tangents back to world space
– Bitangent might need to be adjusted to obtain orthonormal basis
– Adjoint matrix not necessary, can compute normal from tangent

and bitangent

Ray-tracing through a Hierarchy

T_root
T_ShoulderR
T_ShoulderRJoint
T_UpperArmR
T_ElbowRJoint
T_LowerArmR
T_WristRJoint
...

T_ShoulderL
T_ShoulderLJoint
T_UpperArmL
T_ElbowLJoint
T_LowerArmL
...

apply+push 𝑀3!

pop

apply+pop 𝑀,𝑁

Instancing

𝑀!

𝑇

• 𝑇 – set of triangles
• local coordinates
• memory

• 𝑀* – transformation matrices
• local-to-world

• Multiple rendered objects
• Correct lighting, shadows, etc...
• Never ”materialized” in memory

𝑀"

𝑀#

𝑀G

