Computer Graphics

- Clipping -

Philipp Slusallek

Clipping

* Motivation
— Projected primitive might fall (partially) outside of screen window
* E.g., if standing inside a building
— Eliminate non-visible geometry early in the pipeline to process
visible parts only
— Happens after transformation from 3D to 2D
— Must cut off parts outside the window
» Outside geometry might not be representable (e.g., in fixed point)
« Cannot draw outside of window (e.g., plotter (hardly exist anymore))
— Must maintain information properly
« Drawing the clipped geometry should give the correct results:
— E.g., correct interpolation of colors across triangle even when clipped

» Type of geometry might change
— Cutting off a vertex of a triangle produces a quadrilateral (up to hexagon)
— Might need to be split into triangles again

» Polygons must remain closed after clipping

Line Clipping

« Definition of clipping
— Cut off parts of objects which lie outside/inside of a defined region
— Often clip against viewport (2D) or canonical view-volume (3D)

* Let’s focus first on lines only

\
/IS |,

m 4

Brute-Force Method

* Brute-force line clipping at the viewport

— If both end points p, and p, are inside viewport
» Accept the whole line

— Otherwise, clip the line at each edge
* Pintersection = Pb T tiine(Pe — Pp) = €p + teage(€e — €p)
* Solve for t;. and teqge

— Intersection within segment if both 0 < ¢}, tegge < 1

» Replace suitable end points for the line by the intersection point

— Unnecessarily tests many cases that are irrelevant

—

Pp

€e

_—

__—P.

€p

Cohen-Sutherland (1974)

« Advantage: divide and conquer

— Efficient trivial accept and trivial reject
— Non-trivial case: divide and test

« Outcodes of points 1001! 1000 | 1010
— Bit encoding (outcode,OC) | |

« Each viewport edge defines a half space 0001 | 0000 0010

- Set bit if vertex is outside w.r.t. that edge =~ -t

Trivial 0101 0100 {0110
r|V|.a. cases o Bit order: top, bottom; right, left
— Trivial accept: both are in viewport .
VleWpOft (Xmin, Ymins Xmax; Ymax)
* (OC(py) OR OC(pe)) ==
— Trivial reject: both lie outside w.r.t. at least one common edge
* (OC(py) AND OC(pe)) # 0

— Line has to be clipped to all edges where XOR bits are set, i.e.
the points lies on different sides of that edge

* OC(py) XOR OC(pe)

Cohen-Sutherland

« Clipping of line (p1, p2)

ocl = OC(pl); oc2 = OC(p2); edge = O;

do {
if ((ocl AND oc2) !'= 0) // trivial reject of remaining segment
return REJECT;
else if ((ocl OR oc2) == 0) // trivial accept of remaining segment

return (ACCEPT, pl, p2);
if ((ocl XOR oc2) [edge]) {

if (ocl[edge]) // pl outside
{pl = cut(pl, p2, edge); ocl = OC(pl);}
else // P2 outside

{P2 = cut(pl, p2, edge); oc2 = 0OC(p2);}

}
} while (++edge < 4); // Not the most efficient solution

return ((ocl OR oc2) == 0) ? (ACCEPT, pl, p2) : REJECT; 1000 1010
 Intersection calculation for x = x,,,;,

Y ~—Yp _ Xmin — Xp

Ye — Vb Xe — Xp

Ye — Vb
Y =DYp +(Xmin — Xp) xi_—xb

Cyrus-Beck (1978)

« Parametric line-clipping algorithm
— Only convex polygons: max 2 intersection points
— Use edge orientation, via ,normals” pointing out
« ldea: clipping against polygons
— Clip line p = p, + t;(p. — pp) against each edge

t
— Intersection points sorted by parameter t. _____?_Lft ________
— Select . |
* t: entry point ((p, — pp) - N; < 0) with largest t; Py |

o tout: exit point ((p. — pp) * N; > 0) with smallest t;
— Ift,,: < t, line lies completely outside (akin to ray-box intersect.)

 [Intersection calculation
(p - pea’ge) Ny =0

Qedgﬁ,\< N, ti(Pe —pp) - Ni + (Pb = Pedge) N =0

P .7 Pe

o D)D - (pgdgg - pb) - N;
\ L (pe - pb)) Ni

Liang-Barsky (1984)

« Cyrus-Beck for axis-aligned rectangles P,
— Using window-edge coordinates f

(with respect to an edge T) y J’pT
WECr(p) = (p —pr) - Nt P,
* Example: top (Y = Ymax) I
> X
Me=(1) po=pr =5 ~ymad)
- (pp — pr) - Ny B WEC:(pp) _ Yb — Ymax

tn = = =
T oy —pe) Ny WECr(pp) — WECr (Do) Yo — Ve

— Window-edge coordinate (WEC): decision function for an edge
» Directed distance to edge
— Only sign matters, similar to Cohen-Sutherland opcode
 Sign of the dot product determines whether the point is in or out
* Normalization unimportant

Line Clipping - Summary

« Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky
algorithms readily extend to 3D

« Cohen-Sutherland algorithm
+ Efficient when majority of lines can be trivially accepted / rejected
» Very large clip rectangles: almost all lines inside
« Very small clip rectangles: almost all lines outside
— Repeated clipping for remaining lines
— Testing for 2D/3D point coordinates

 Cyrus-Beck (Liang-Barsky) algorithms
+ Efficient when many lines must be clipped
+ Testing for 1D parameter values

— Testing intersections always for all clipping edges (in the Liang-
Barsky trivial rejection testing possible)

Polygon Clipping

« Extended version of line clipping

— Condition: polygons have to remain closed
 Filling, hatching, shading, ...

Sutherland-Hodgeman (1974)

 |dea

— lterative clipping against each edge in sequence

&

— Four different local operations based on sides of p;.; and p;

Y
Pi

inside

outside

output: p;

P

p

N
Pi

inside

output:

outside

p

Pi-1
inside outside
output: -

inside

Pi-1

Pid/’p/o

outside

1st output: p
2nd output: p;

Enhancements

Recursive polygon clipping

— Pipelined Sutherland-Hodgeman

Po; P1; .- —>

* Problems

Top

—>

Bottom

—> Left |—

— Degenerated polygons/edges

« Elimination by post-processing, if necessary

Right

> Po, P1s -

P

Other Clipping Algorithms

 Weiler & Atherton ('77)
— Arbitrary concave polygons with holes against each other
. Vatti ("92)
— Also with self-overlap

* Greiner & Hormann (TOG "98)

— Simpler and faster as Vatti
— Also supports Boolean operations
— ldea:
« Winding number (WN)

— Intersection with the polygon leads to a change in winding number of +1
Walk along both polygons
Alternate winding number value, depending on going in/out
Mark point of entry and point of exit
Combine results

Greiner & Hormann

5
1
1
3
i
1

(AinB) U (B in A)

3D Clipping agst. View Volume

 Requirements

— Avoid unnecessary rasterization
— Avoid overflow on transformation at fixed point!
« Clipping against viewing frustum
— Enhanced Cohen-Sutherland with 6-bit outcode
— After perspective division
e -1<y<1
e -1<x<1
e -1<2z<0
— Clip against side planes of the canonical viewing frustum
— Works analogously with Liang-Barsky or Sutherland-Hodgeman

3D Clipping agst. View Volume

« Clipping in homogeneous coordinates

— Use canonical view frustum, but avoid costly division by W
— Inside test with a linear distance function (WEC)

o« Leftt X/W>-1 = W+X=WEC(p)>0

« Top: Y/W<1 = W-=Y=WECt(p)>0

- Back: Z/W>-1 = W+Z=WECg(p)>0
— Intersection point calculation (before homogenizing)

» Test: WEC, (py) > 0 and WEC (pe) <0

 Calculation:

WEC(pp + t(pe —pp)) = 0
Wb+t(VVe—Wb)+Xb +t(Xe—Xb) = O
Wp + Xp WEC,(pp)

t = (Wy+X,) — (W, + X,) WEC,(py) — WEC,(pa)

Problems with Homogen. Coord.

* Negative w

— Points with w < 0 or lines withw,<0and w, <0

* Negate and continue

— Lines with w, - w, < 0 (NURBS)

* Line moves through infinity
— External ,line”
» Clipping two times
— Original line
— Negated line
« Generates up to two segments

W=1

Practical Implementations

« Combining clipping and scissoring
— Clipping is expensive and should be avoided
* Intersection calculation
» Variable number of new points, new triangles
— Enlargement of clipping region
* (Much) larger than viewport, but
« Still avoiding overflow due to fixed-point representation
— Result

« Less clipping Clipping region

» Applications should avoid drawing
objects that are outside of
the viewport/viewing frustum Viewport

* Objects that are still partially <>
outside will be implicitly clipped N
during rasterization

« Slight penalty because they will still be
processed (triangle setup) ‘l

