
Dynamic 2.5D Treemaps using Declarative 3D on the Web

Daniel Limberger∗

Hasso Plattner Institute
University of Potsdam

Willy Scheibel
Hasso Plattner Institute
University of Potsdam

Stefan Lemme
DFKI

Saarland University

Jürgen Döllner
Hasso Plattner Institute
University of Potsdam

Figure 1: Interactive 2.5D treemap clients (with dynamic attribute mapping) based on X3DOM, XML3D, and glTF developed in our study.

Abstract

The 2.5D treemap represents a general purpose visualization tech-
nique to map multi-variate hierarchical data in a scalable, interac-
tive, and consistent way used in a number of application fields. In
this paper, we explore the capabilities of Declarative 3D for the
web-based implementation of 2.5D treemap clients. Particularly,
we investigate how X3DOM and XML3D can be used to imple-
ment clients with equivalent features that interactively display 2.5D
treemaps with dynamic mapping of attributes. We also show a first
step towards a glTF-based implementation. These approaches are
benchmarked focusing on their interaction capabilities with respect
to rendering and speed of dynamic data mapping. We discuss the
results for our representative example of a complex 3D interactive
visualization technique and summerize recommendations for im-
provements towards operational web clients.

Keywords: 2.5D Treemap; Dec3D; X3DOM; XML3D; glTF

Concepts: •Human-centered computing → Visual analytics;
Web-based interaction;

1 Introduction

Treemaps [Shneiderman 1992] provide effective means to display,
explore, and analyze multi-variate large hierarchical data, e.g.,
large-scale software system data [Langelier et al. 2005; Bohnet and
Döllner 2011] and business data [Vliegen et al. 2006]. Treemaps
use space-restricted, recursively nested sets of rectangles, which ex-
press parent-child relationships among nodes; the rectangles’ sizes
are proportional to per-node weights. Data associated with nodes,
denoted by attributes, can be mapped by means of visual variables
[Carpendale 2003] of treemaps, e.g., rectangle size, color, texture,
and shading. 2.5D treemaps extend treemaps by using the third di-
mension: rectangles are extruded to 3D blocks, keeping the regular
treemaps two-dimensional reference space and layout [Bladh et al.
2004]. Blocks emphasize the hierarchical nesting of inner nodes
and introduce another strong visual variable, namely height, for the
leafs. Thus, 2.5D treemaps allow us to independently map three
attributes (size, color, height) and to visually relate these attributes

∗e-mail:daniel.limberger@hpi.de

Web3D ’16,, July 22-24, 2016, Anaheim , CA, USA
ISBN: 978-1-4503-4428-9/16/07...$15.00
DOI: http://dx.doi.org/10.1145/2945292.2945313

in a single view. Technically, 2.5D treemaps are represented by 3D
scenes and often ambiguously denoted by “3D treemaps”.

A growing number of applications and systems can take advantage
of 2.5D treemaps providing means to interactively explore and ana-
lyze large-scale hierarchical data. Interactivity and scalability are
key to the user to gain insights, to uncover structures and patterns as
well as to acquire knowledge by reasoning. Insofar, 2.5D treemaps
are representative for a large number of dedicated interactive data
visualization techniques. Incorporating a 2.5D treemap as a visua-
lization component in web-based applications is faced by a number
of challenges from a software engineering point of view. In parti-
cular, if implementations are based on imperative 3D graphics pro-
gramming, typical problems arise related to code complexity, inter-
operability across platforms, integration into web-based workflows,
and software maintenance. Declarative 3D provides an alternative
approach (Figure 1) investigated in this paper. We present and eval-
uate implementations of 2.5D treemap web clients based on three
different technologies X3DOM, XML3D, and glTF. We also dis-
cuss how to efficiently and dynamically map attribute data to visual
variables. Our evaluation focuses on three main aspects:

• Rendering Performance: User interaction requires interactive
frames rates and short data transmission times, taking into ac-
count that treemaps visualize up to 104 − 107 items.

• Dynamic Data Mapping: The clients need to support dynamic
attribute mapping on a per-item basis, e.g., adding additional
data, selecting and filtering individual items.

• Declarative Paradigm: The visualization clients should be
fully based on declarative 3D graphics.

2 Related Work

The treemap [Shneiderman 1992] represents a well-known tech-
nique to depict hierarchically structured information in a space-
restricted, space-filling way using recursive inclusion. Various lay-
out algorithms have been investigated with different characteristics,
e.g., aspect ratio of resulting rectangles, layout stability and ro-
bustness [Tak and Cockburn 2013]. Apart from a large number of
stand-alone implementations, a first scalable web-based 2.5D tree-
map [Limberger et al. 2013], used to visualize data about software
systems and development processes, efficiently encodes data trans-
ferred to clients and uses vertex attribute arrays for rendering.

While WebGL enables most browsers to directly render 3D gra-

http://dx.doi.org/10.1145/2945292.2945313


phics inside the HTML <canvas> element, it is based on a low-
level imperative API. The use of such APIs, however, can be con-
sidered to be orthogonal to most existing web technologies, which
include contents in web documents and get modified via DOM API.
The “Declarative 3D for the Web Architecture W3C Community
Group”provides platforms to embed 3D graphics within the HTML
DOM [Jankowski et al. 2013]: X3DOM [Behr et al. 2009] and
XML3D [Sons et al. 2010]. X3DOM implements a subset of the
nodes specified by X3D, an existing ISO standard [Web3D Consor-
tium 2008], for the web. In contrast to X3DOM, which brings an
existing format into the web, XML3D provides a minimal set of ele-
ments as an extension to HTML5. Thereby, XML3D seamlessly in-
tegrates with the web technology stack and leverages HTML, CSS,
and JavaScript events. The Khronos Group released the OpenGL
Transmission Format glTF [Khronos Group 2015], which will al-
low applications to receive and process standard format 3D assets
and, thereby, to reuse the ecosystem of asset pipeline tools. glTF
supports extensions, e.g., extern and binary assets. Compared to
X3DOM and XML3D, glTF is only a transmission format, not
intended to be directly renderable, as it has to be converted into
renderer-specific scene descriptions. As a consequence, it is diffi-
cult to directly modify the 3D scene at a high level of abstraction.

Since browser vendors stated that native support of declarative 3D
is not their priority [Jankowski et al. 2013], supplementary support
by means of WebGL-based Polyfill implementations [Sons et al.
2013] are provided. In terms of glTF, we take advantage of a ren-
derer based on three.js1.

3 2.5D Treemaps using X3DOM

X3D documents typically contain a <scene>, a <viewpoint>, and
various <transform>s and <shape>s. We have applied three differ-
ent approaches for encoding the geometry of 2.5D treemaps: (1)
multiple <box> tags, (2) a single unit cube specified by a single
<indexedfaceset> that is reused, and (3) a pre-baked buffer via a
single <indexedfaceset> tag. Attribute mapping to the visual vari-
ables height, color, and ground size is explicitly resolved and, thus,
directly specified in X3D properties. In practice, the attribute map-
ping to the cuboids’ ground size is often fixed to a single attribute,
i.e., it does not change for various map themes. X3DOM provides a
special “turntable” navigation that allows users to control azimuth
and altitude. The latter can be further constrained by lower and up-
per angles to restrict the camera position to the upper hemisphere,
which is preferred for 2.5D treemaps. For picking of individual data
elements, e.g., to provide selection and filtering mechanics as well
as additional node information, we leverage DOM event handlers
and process the desired element’s attributes appropriately. This de-
sign allows us to declaratively specify a 2.5D treemap depicting
several thousand data elements via X3DOM.

Boxes. This approach uses the <box> tag as base geometry for
each node of the treemap. The base tag of a treemap node is
a <transform> for the position and size transform of the shared
base geometry. <appearance> and <material> tags define a node’s
color, specifically the diffuseColor attribute is used. A <shape>

with the <box> as child reuses the base geometry. Updating tree-
map nodes is restricted to changes to <transform> attributes for
height and <material> attributes for the color. Similarly, we use
emissiveColor of <material> for highlighting.

Shared Geometry. A 2.5D treemap is mainly composed of boxes
and typically viewed from the top hemisphere. Hence, the bottom
faces can be omitted to optimize the geometric representation. The

1http://threejs.org/examples/webgl loader gltf.html

<indexedfaceset> tag is used to define five faces for each node.
The normals are defined for each face; setting its normalPerVertex
attribute to false. This shape is then reused for all treemap nodes
using the def and use attributes. The usage in the X3DOM hierar-
chy and the updates are similar to the boxes approach.

Pre-Baked Buffer. Similar to geometry encoding of WebGL-
based rendering systems for 2.5D treemaps [Limberger et al. 2013],
XML3D enables geometry specification by means of coordinate,
normal, color, and index buffers via the <indexedfaceset>. The
five individual faces of every block (omitting bottom faces) are
encoded via 3D points in a buffer represented by the points at-
tribute of a single <coordinate> tag. The points are then ref-
erenced by their positions within the buffer using the face sets
coordindex attribute. For encoding of colors and normals there
are two ways: (1) reusing the coordinate indices by providing a
color value and a normal for each vertex individually or (2) define
the available colors and normals once and provide additional index
buffers for coordinate-based reference. Either way, colors are en-
coded in the color attribute of a single <colorrgba> tag, normals in
the vector attribute of a single <normal> tag. The colorIndex and
normalIndex attributes can then be used for optimized indexation.
With the respective knowledge of each buffers structure, we im-
plement dynamic remapping by changing the values at appropriate
positions via JavaScript. Even though the identification of single
treemap nodes is possible, X3DOMs picking buffer implementa-
tion cannot be used to identify nodes by picking: the suggested
encoding of identifiers via color is not an option since color itself
is required as visual variable. Using the idBuf does not help either
since only world space positions are returned and a position based
retrieval of individual nodes is nontrivial.

4 2.5D Treemaps using XML3D

With respect to data handling XML3D is flexible due to its inte-
gration of Xflow [Klein et al. 2013]. However, every renderable
object in an XML3D scene is represented using a <mesh> element
to achieve individual interaction (i.e., event handler). Each mesh
is fed with geometry data, material properties, and a scene graph
transformation. In the following, approaches using basic meshes,
assets, and pre-baked buffers are discussed.

Basic Meshes Since 2.5D treemaps are exclusively composed of
blocks a single base geometry per <mesh> element can be reused to
minimize the memory footprint. This is done by referring to the
same <data> element via document id in the src attribute. The
material is shared by all blocks as well; it is attached once to the
surrounding <group> element and derived by its children. For each
mesh the material is configured by overriding the diffuseColor to
customize its appearance. To highlight map elements either the ma-
terial properties are changed or a different material is applied. For
it, the elements material attribute is set, causing the material de-
rived from the surrounding group to be overridden. Finally, a scene
graph transformation is used to put each block in place and shape it
accordingly. For that purpose, XML3D usually takes advantage of
CSS 3D Transforms [Sons et al. 2013]. However, XML3D also of-
fers the <transform> element for convenience and improved perfor-
mance in interactive applications. Rather than frequently updating
a mesh’s style attribute, each mesh refers to its dedicated transform,
which is updated in turn. As a consequence, it doubles the number
of required DOM elements but also enables dataflow processing for
the block transformations.

Assets With the introduction of configurable models by Klein et.
al [2014], XML3D was extended by asset instancing. Hence, we

http://threejs.org/examples/webgl_loader_gltf.html


Basis Approach
DOMContent

Loaded
First Frame
Displayed

Continuous
Rendering

Remapping
all Colors

Remapping
all Heights

Highlighting of
one Leaf Node

X3DOM Boxes 0.48s 4.05s 15fps 87ms 152ms 91ms
X3DOM Shared Geometry 1.37s 3.60s 15fps 87ms 124ms 86ms
X3DOM Pre-baked Buffer 0.63s 1.19s 60fps 112ms 552ms 696ms

XML3D Mesh 1.59s 2.05s 30fps 173ms 98ms 37ms
XML3D Assets 2.21s 2.70s 29fps 97ms 104ms 40ms
XML3D Pre-baked Buffer 1.46s 2.78s 28fps 291ms 293ms 37ms

glTF Static 0.24s 0.29s 60fps – – –

Table 1: All measurements were captured and averaged over 1.000 iterations for the same data set of 2990 nodes (358 parent and 2632
leaf nodes) with the same attribute mapping applied. All data was deployed on a server (http://hpicgs.github.io/web3d-treemaps/ ) and
loaded/processed locally in Chrome (50.0.2661.87 64-bit) running on a Notebook (Intel Core-i7 6700HQ, 16GB RAM, Windows, Intel HD
530). For polyfill and DOM publicly available resources were used based on X3DOM 1.7.1, XML3D 5.1.4, and glTF 1.0 (with three.js r76).

can wrap the block geometry into an <assetmesh> within a <asset>

element. For each instance, we create a <model> element and con-
figure it with child elements that are fed into the dataflow of the
asset. Since the material is applied as before and derived from the
surrounding group, we just set the diffuseColor as before. To put
each block in place, we have exactly the same options as before-
hand. Even though it is desirable to configure the transform via
the asset interface as well, meshes and assetmeshes can refer to
<transform> elements only by document ids, whereas their global
scope prohibits this approach.

Pre-Baked Buffer In contrast to the previous approaches where
the same block was transformed several times into its final place at
runtime, in this approach we pre-compute the full geometry of the
2.5D treemap. For it, we duplicate the block and store its trans-
formed geometry into a (large) buffer. We can take advantage of
domain-specific dataflow operators to perform the block’s transfor-
mation based on raw input data to be visualized. We could use a
single <mesh> element for the treemap due to the baked transform,
however this breaks individual interaction. Instead, we maintain
one mesh per block, all referring to the same <data> element, but
using indices to draw just the relevant subset of the buffer. These
indices are in turn computed based on the id of the block to be re-
presented. The material is applied as before and derived from the
surrounding group. We can also just set the diffuseColor as before
but this approach also allows for baking colors of the blocks into
their vertices since the data is duplicated anyway.

5 2.5D Treemaps using glTF

To effectively encode 2.5D treemaps with glTF we rely on the static
scene description functionality, i.e., no animations and skins have
been used. The treemap and its rendering can be fully described
using accessors, buffer views, buffers, materials, meshes, nodes,
programs, scenes, shaders, and techniques. Although several dif-
ferent approaches to encode the treemap scene exist, the one with
acceptable characteristics regarding loading time and rendering per-
formance was chosen: a single mesh representing the whole 2.5D
treemap. One disadvantage is the implementation of picking, for
which we have to render an explicit id buffer and then perform tex-
ture lookups while picking. The resulting glTF description uses
buffers containing the positions, normals, and additional attributes
of a list of blocks. The used additional attributes are the color of the
treemap node and its id, primarily used for picking. Buffer views
and accessors for each buffer makes the vertices accessible to the
rendering system. The scene contains one single mesh representing
all treemap nodes as its primitives. It uses one material that pro-

vides the used technique and no additional values. The rendering
of the whole scene uses one technique, which results in one vertex
shader, one fragment shader and one program.

Due to the lack of a prevalent or official web-based glTF viewer,
the effort to use glTF becomes comparable to a dedicated WebGL-
based renderer and, therefore, we dropped it for evaluation in the
light of declarative 3D.

6 Results and Discussion

For performance measurements, the clients processed and rendered
the same attributed data set with 2,990 nodes. The results were
obtained by manual instrumentation and suggest interactive frame
rates on consumer hardware for all approaches (Table 1).

Similar to other available WebGL-based rendering libraries,
XML3D, X3DOM, and glTF are designed for general 3D contents,
which impedes use-case specific optimizations. While X3DOM
features best loading performance, the visualization is ready in
XML3D first (except for the pre-baked buffers). Here, XML3D
probably benefits from its generic data handling that is close to
actual WebGL buffers. While numerous approaches for handling
complex 3D geometry exist, i.e., consisting of massive number of
triangles or extensive texture data [Behr 2012; Limper et al. 2014;
Sutter et al. 2014], in most cases they deal with comparatively few
separate meshes. In data visualization the prerequisites are usually
opposite: the geometry is simple but the number of meshes is large,
which is not specifically addressed by any of these.

When it takes too long to load a web page, it is declared unrespon-
sive by today’s browsers, offering the user to cancel their rendering
attempt. To bypass this kind of situation, we selected a data set that
could be rendered with all declarative 3D approaches. For client-
side computation of the treemap layout, all elements would have to
be created dynamically, circumventing the page unresponsive be-
havior. However, this would affect the time to the first frame due to
the additional required computations.

For both declarative 3D approaches, the deployment was simple.
X3DOM has a slight advantage for 2.5D treemaps (in terms of ex-
pressiveness) because it includes the <box> element, not requiring
an explicit vertex specification. Common functionality, such as
picking, further supports this. In addition, Xflow’s data process-
ing capabilities in XML3D provides an appreciated flexibility for
processing visualization data, e.g., it can overcome the lack of geo-
metry shaders in WebGL.

Changing the geometry in the scene can be easily accomplished in
both X3DOM and XML3D by manipulating the DOM. While most

http://hpicgs.github.io/web3d-treemaps/


of our approaches require custom JavaScript code to apply these
manipulations throughout several <shape> or <mesh> elements in
the DOM, XML3D’s flexible data composition system can be used
to reduce the number of DOM manipulations.

Because declarative 3D implementations ease development, the
time to create the the 2.5D treemap visualization clients was rather
low (a few days). Using standard formats for such visualization
makes them more accessible on the web, which was one of the goals
for this case study. Declarative 2.5D treemap visualization could be
easily integrated into existing web pages or published in a cloud-
based collaboration platform. In addition, using standardized, open
data formats simplifies archiving of visualization and there is no
need for a proprietary, self-maintained viewer application.

7 Conclusions and Future Work

All presented approaches enable the embedding of 2.5D treemaps
within the existing web technology stack (with a constraint of
XML3D and X3DOM for interaction). This allows us to leverage
existing web technologies such as JavaScript events for interaction
handling. Features like built-in object picking, e.g., for selection
and hovering of blocks, dynamic data remapping as well as basic
navigation concepts components top off Declarative 3D to a full-
fledged sandbox for rapid prototyping of visualization components.
Hence, Declarative 3D provide a powerful alternative to dedicated
renderers, realizing their limitations. Particularly, the large set of
elements usually handled in data visualization points out a crucial
shortcoming. Optimized approaches driven by use-cases will prob-
ably always outperform more generic approaches such as Declar-
ative 3D. Nonetheless, these limits can be pushed much further to
achieve sufficient performance. For instance, revisiting asset in-
stances (i.e., optimize buffer usage and draw calls, geometry in-
stancing) and a proper use of the respective shader stages (i.e., ver-
tex displacement and color lookup tables) may offer another mag-
nitude of performance. Once Xflow supports hassle-free parallel
execution in mainstream browsers, this will become even more in-
teresting. Last, enabling geometry instancing during rasterization
would be good candidate for future work.

The open-source implementation is made available under MIT li-
cense and can be accessed via GitHub pages: https://hpicgs.github.
io/web3d-treemaps/.

Acknowledgements

This work was partially funded by the Federal Ministry of Ed-
ucation and Research (BMBF), Germany, within the InnoProfile
Transfer research group “4DnD-Vis” (www.4dndvis.de), and has
received funding from the European Unions Seventh Framework
Programme under grant agreement no. 632893 (FI-Core), and un-
der grant agreement no. 641191 (CIMPLEX) in the European
Unions H2020 Framework Programme.

References

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3dom: A dom-based html5/x3d integration model. In Proc.
ACM Web3D, 127–135.

BEHR, J., 2012. Declarative 3d workshop report.
https://www.w3.org/community/declarative3d/2012/06/11/2012-
declarative-3d-workshop-report/.

BLADH, T., CARR, D. A., AND SCHOLL, J. 2004. Extending
Tree-Maps to Three Dimensions: A Comparative Study. 50–59.

BOHNET, J., AND DÖLLNER, J. 2011. Monitoring code quality
and development activity by software maps. In Proc. ACM MTD,
9–16.

CARPENDALE, M. S. T. 2003. Considering visual variables as a
basis for information visualisation. Tech. rep.

JANKOWSKI, J., RESSLER, S., SONS, K., JUNG, Y., BEHR, J.,
AND SLUSALLEK, P. 2013. Declarative integration of inter-
active 3d graphics into the world-wide web: Principles, current
approaches, and research agenda. In Proc. ACM Web3D.

KHRONOS GROUP, 2015. Gl transmission format specification.
https://github.com/KhronosGroup/glTF.

KLEIN, F., SONS, K., RUBINSTEIN, D., AND SLUSALLEK, P.
2013. Xml3d and xflow: Combining declarative 3d for the web
with generic data flows. IEEE Computer Graphics & Applica-
tions (CG&A) 33, 5, 38–47.

KLEIN, F., SPIELDENNER, T., SONS, K., AND SLUSALLEK, P.
2014. Configurable instances of 3d models for declarative 3d in
the web. In Proc. ACM Web3D, 71–79.

LANGELIER, G., SAHRAOUI, H., AND POULIN, P. 2005.
Visualization-based analysis of quality for large-scale software
systems. In Proc. ACM ASE, 214–223.

LIMBERGER, D., WASTY, B., TRÜMPER, J., AND DÖLLNER, J.
2013. Interactive software maps for web-based source code anal-
ysis. In Proc. ACM Web3D, 91–98.

LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. SRC - a streamable format for generalized web-based 3d
data transmission. In Proc. ACM Web3D, Web3D ’14, 35–43.

SHNEIDERMAN, B. 1992. Tree visualization with treemaps: A 2d
space-filling approach. ACM Trans. Graph. 11, 1, 92–99.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. XML3D: Interactive 3d graphics for the
web. In Proc. ACM Web3D, 175–184.

SONS, K., SCHLINKMANN, C., KLEIN, F., RUBINSTEIN, D.,
AND SLUSALLEK, P. 2013. xml3d.js: Architecture of a polyfill
implementation of XML3D. In Proc. IEEE SEARIS, 17–24.

SUTTER, J., SONS, K., AND SLUSALLEK, P. 2014. Blast: A
binary large structured transmission format for the web. In Proc.
ACM Web3D, 45–52.

TAK, S., AND COCKBURN, A. 2013. Enhanced spatial stabil-
ity with hilbert and moore treemaps. IEEE Trans. Vis. Comput.
Graph. 19, 1, 141–148.

VLIEGEN, R., VAN WIJK, J. J., AND VAN DER LINDEN, E.-J.
2006. Visualizing business data with generalized treemaps. IEEE
Trans. Vis. Comput. Graph. 12, 5, 789–796.

WEB3D CONSORTIUM, 2008. ISO/IEC
19775:200x, Extensible 3D (X3D).
http://www.web3d.org/x3d/specifications/x3d specification.html.

https://hpicgs.github.io/web3d-treemaps/
https://hpicgs.github.io/web3d-treemaps/
www.4dndvis.de
https://github.com/KhronosGroup/glTF

