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In this document we present additional details regarding the Wasserstein
error bound for Monte Carlo integration, offering insights into the compu-
tation of the Filtered Sliced Wasserstein derivative for the gradient-based
optimizer, and show further results from our study.

1 WASSERSTEIN ERROR BOUND
In their work, Paulin et al. [2020] employed a variation of the
Koksma-Hlawka inequality based on Optimal transport, specifically
the Wasserstein distance.��𝑄 (S) − 𝐼

�� ≤ 𝐿𝑤 ·𝑓𝑊 (S, 𝜌) (1)

Where 𝑓 is the integrated function and𝑤 an arbitrary kernel func-
tion. This bound can be derived from the Lipschitz inequality. Unlike
the Discrepancy, the Wasserstein distance offers the advantage of
being differentiable, making it more suitable for certain applications
and optimization tasks.
The p-Wasserstein distance is defined as

𝑊𝑝 (𝜈, 𝜌) =
(

inf
𝛾 ∈Γ (𝜈,𝜌)

∫
X2

|𝑥 − 𝑦 |𝑝 d𝛾 (𝑥,𝑦)
)1/𝑝
, (2)

where 𝑝 can be arbitrary integer greater or equal to 1. 𝜈 and 𝜌

are two density distribution. In practice we use the 2-Wasserstein
distance. For convenience, we will simplify the notation as𝑊 (𝜈).
Initially defined for a single pixel, Wasserstein error bound has

been extended by Salaün et al. [2022] to a Filtered bound. This ex-
tended bound allows for the inclusion of filters that overlap multiple
pixels, transforming the problem into a multi-class one.��𝑄𝑤 (S) − 𝐼𝑤

�� ≤ 𝐿𝑓

∫
R
𝑊 (S𝑤>𝑧) d𝑧 (3)

Note that in Eq. (3) the kernel𝑤 is part of the Wasserstein distance.
This makes it a tailored distance metric wrt the kernel function.
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Minimizing the multi-class error bound is equivalent to solving the
following barycentric optimization problem:

S = argmin
S

∫ 𝑀

0

∫
R
𝑊

(
S𝑤𝑚>𝑧

)
d𝑧 d𝑚 (4)

with𝑀 the number of kernel/pixel in the image sequence.

SlicedWasserstein distance. TheWasserstein distance can be bounded
by a variation called the Sliced Wasserstein distance, which in turn
is bounded by the Wasserstein distance at a factor determined solely
by the dimensionality.

𝑊 (S) ≤ 𝑆𝑊 (S) ≤ 𝐶𝑑 ·𝑊 (S) (5)

This property makes the Sliced Wasserstein distance an excellent
metric to substitute for the Wasserstein distance. Moreover, the
Sliced Wasserstein distance is often more practical to compute, mak-
ing it a favorable choice for many applications.

2 FILTERED SLICED WASSERSTEIN DERIVATIVE
Our optimization algorithm is based on an iterative gradient-based
method, which is defined by the following equation:

S𝑖+1 = S𝑖 − 𝜂
𝑑

𝑑S𝑖

𝑀∑︁
𝑗=1

∫
R
𝑆𝑊 (S𝑔𝑗>𝑧)𝑑𝑧 (6)

where S𝑖 represents the sample-set at iteration 𝑖 , and𝜂 is the learning
rate. This iterative approach allows us to update the parameters in
each iteration, progressively improving the optimization process.
The details of the derivative are defined as follows:

𝑑

𝑑S𝑖

𝑀∑︁
𝑗=1

∫
R
𝑆𝑊 (S𝑔𝑗>𝑧 , 𝜌𝑔𝑗>𝑧)𝑑𝑧

=
𝑑

𝑑S𝑖

𝑀∑︁
𝑗=1

∫
R

∫
S𝑑−1

𝑊 (S𝜃𝑔𝑗>𝑧)𝑑𝜃𝑑𝑧 (7)

This equation represents the gradient of the objective function with
respect to the parameters S𝑖 at iteration 𝑡 . It captures the direction
and magnitude of the steepest ascent or descent in the parameter
space during the optimization process.

In the given equation, the Wasserstein distance is computed in 1D
by projecting both the sample set and the target density onto a 1D
line. This projection operation is known as the Sliced Wasserstein
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distance. By reducing the dimensionality, it becomes feasible to
derive a straightforward solution for the derivative using the inverse
cumulative distribution function of the target density. If we extract
a sample 𝑥𝑖 from the sample set, the derivative of its position with
respect to the Sliced Wasserstein distance is given by:

𝑑

𝑑𝑥𝑖
𝑊 (S𝜃𝑔𝑗>𝑧) =

𝑚

𝑛

[
2
𝑥𝜃
𝑖

𝑚
− 2

∫ 𝑖
𝑚

𝑖−1
𝑚

𝐹−1
𝜌𝜃

(𝑥) d𝑥
]

(8)

Here 𝐹−1
𝜌𝜃

(𝑥) denotes the inverse cumulative distribution function

of the projected target density, and the integral
∫ 𝑖

𝑚
𝑖−1
𝑚

represents the
quantile associated with the position of i-th sample sorted by pro-
jected position 𝑥𝑖 . 𝑥𝜃𝑖 is the position of the projection of the point 𝑥𝑖
along the direction 𝜃 .𝑚 represent the number of point in the S𝑔𝑗>𝑧
and 𝑛 the total number of points of the sample set. The computation
of the inverse cumulative distribution function (CDF) and quantiles
can be efficiently solved by sorting the list of projected samples for
the quantile calculation and sorting the discretized projected target
density for the inverse CDF. By relying solely on sorting operations,
this process becomes efficient for an optimal transport-based meth-
ods. For more details about the derivation we refer to Salaün et al.
[2022] as the proof on the error bound and derivatives have been
made for any arbitrary kernel including spatio-temporal ones.

3 ADDITIONAL RESULTS
In this section we present additional results to those in the main
paper. This includes illustration of artifacts due to insufficiently
large tile size in Fig. 1, perceptual error tables comparing different
optimizations for our method in Table 1 and the comparison of our
method with uncorrelated sampling, [Wolfe et al. 2022] and [Salaün
et al. 2022] for spatio-temporal rendering in Table 2.

Large TileLarge TileSmall TileSmall Tile

Fig. 1. Rendering with a tile size of 32×32×10 pixels shows noticeable tiling
artifacts (left). Increasing the tile size to 128×128×30 pixels avoids such
artifacts (right).
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Table 1. Ablation test for different optimization objectives. On an animation with TAA, we test sample sets optimized for three different temporal kernels: a
symetric Gaussian akin to Wolfe et al. [2022], an EMA TAA kernel, and our full model inccorporating the TAA kernel and the perception of [Mantiuk et al.
2021]. We compare the perceived noise (pRelMSE) using Wolfe et al. [2022] as the baseline; lower is better. Lowest error is achieved when the optimization is
tailored to the full filter.

Scene Uncorrelated Ours Gaussian Ours TAA Ours Mantiuk et al. [2021] +TAA

Chopper 0.0061 0.0046 0.0046 0.0043
Teapot 0.0063 0.0049 0.0048 0.0044
Modern Hall 0.0264 0.0242 0.0238 0.0234
Living Room 0.0375 0.362 0.0359 0.0355
Dragon 0.0043 0.0034 0.0033 0.0031
Veach MIS 0.0171 0.0131 0.0133 0.0126

Table 2. Perceptual error (pRelMSE) across different scenes. We compare uncorrelated sampling, Salaün et al. [2022], Wolfe et al. [2022] and our method
optimized for perceptual temporal filter; lower is better. Comparison are done with and without the TAA filtering. In the upper half of the table, we report the
results using common standard deviation of 2.1 for 𝑔s, and in the bottom half we used standard deviation of 1.9 proposed by Wolfe et al. [2022]. Note that in
the upper half we report also the results for [Wolfe et al. 2022] with standard deviation proposed by the authors. In both cases, and on every tested scene, our
method achieves the lowest perceptual error.

Scene Uncorrelated Salaün et al. [2022] Wolfe et al. [2022] Ours perceptual

TAA no TAA TAA no TAA TAA 𝜎 =2.1|1.9 no TAA 𝜎 =2.1|1.9 TAA no TAA
Chopper 0.0088 0.0140 0.0054 0.0087 0.0061 | 0.0058 0.0101 | 0.0096 0.0043 0.0077
Teapot 0.0079 0.0126 0.0051 0.0079 0.0063 | 0.0050 0.0099 | 0.0082 0.0044 0.0073
Modern Hall 0.0270 0.0346 0.0244 0.0295 0.0264 | 0.0257 0.0327 | 0.0315 0.0234 0.0288
Living room 0.0423 0.0561 0.0366 0.0460 0.0375 | 0.0363 0.0480 | 0.0462 0.0355 0.0447
Dragon 0.0065 0.0107 0.0035 0.0056 0.0043 | 0.0040 0.0072 | 0.0067 0.0031 0.0055
Veach MIS 0.0174 0.0263 0.0152 0.0218 0.0171 | 0.0168 0.0242 | 0.0238 0.0126 0.0182

Chopper 0.0094 0.0151 0.0061 0.0098 0.0063 0.0104 0.0053 0.0083
Teapot 0.0084 0.0137 0.0057 0.0088 0.0055 0.0090 0.0050 0.0076
Modern Hall 0.0280 0.0365 0.0257 0.0315 0.0266 0.0328 0.0238 0.0292
Living room 0.0442 0.0589 0.0202 0.0288 0.0208 0.0303 0.0181 0.0249
Dragon 0.0071 0.0117 0.0039 0.0063 0.0044 0.0073 0.0036 0.0057
Veach MIS 0.0186 0.0278 0.0164 0.0231 0.0177 0.0250 0.0137 0.0194
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